Guide sur les référentiels géodésiques et altimétriques au Québec

Juin 2010

Ministère des Ressources naturelles et de la Faune
Réalisation

Ministère des Ressources naturelles et de la Faune
Direction de la référence géodésique
Yves Thériault, M. Sc.
5700, 4e Avenue Ouest, bureau E-304
Québec (Québec) G1H 6R1
Téléphone : 418 627-6281
Télécopieur : 418 646-9424
Courriel : information.geographique@mrnf.gouv.qc.ca
Site Internet : www.mrnf.gouv.qc.ca

Diffusion

Cette publication est conçue pour une impression recto-verso.

La reproduction des textes n’est autorisée qu’à des fins d’enseignement, avec mention de la source.

© Gouvernement du Québec, 2010
Ministère des Ressources naturelles et de la Faune
Dépôt légal – Bibliothèque et Archives nationales du Québec, 2010
Note au lecteur

Les techniques de mesure et les connaissances dans le domaine des sciences géodésiques évoluent de plus en plus rapidement tout en s’influencent mutuellement. En fonction de cela, certains passages de ce guide peuvent devenir désuets à plus ou moins longue échéance. Ce document présente l’état des référentiels géodésiques et altimétriques qui ont cours au Québec en avril 2010.

Le niveau de détail de ce document varie en fonction du besoin. La présentation et la description des différents sujets abordés essaient, dans la mesure du possible, de rester d’ordre général. Parfois, certains concepts doivent être introduits. Par exemple, il est nécessaire d’expliquer le rôle des surfaces équipotentielles dans le référentiel altimétrique pour bien faire comprendre les inexactitudes du CGVD28.

Ce guide ne décrit en détail aucune technique de mesure et de calcul utilisée pour l’établissement de points géodésiques ou de repères altimétriques. Le lecteur désirant acquérir plus de connaissances dans ce domaine peut consulter d’excellents ouvrages et sites Internet. Les références utilisées pour la production de cet ouvrage peuvent servir de point de départ.
Table des matières

NOTE AU LECTEUR .. I

TABLE DES MATIÈRES ... III

LISTE DES TABLEAUX .. V

LISTE DES FIGURES .. VII

LISTE DES SIGLES ET ACRONYMES ... IX

1 INTRODUCTION ... 1

2 LA TERRE .. 3

 2.1 MOUVEMENTS HORIZONTAUX ... 4

 2.2 MOUVEMENTS VERTICAUX ... 5

 2.3 MOUVEMENTS GLOBAUX ... 6

3 LES SYSTÈMES DE COORDONNÉES ... 9

4 LES RÉFÉRENTIELS GÉODÉSIQUES CLASSIQUES ... 11

5 LES RÉFÉRENTIELS GÉODÉSIQUES MODERNES .. 15

 5.1 SYSTÈMES DE RÉFÉRENCE TERRESTRES GLOBAUX .. 15

 5.1.1 ITRS .. 17

 5.1.2 WGS84 .. 20

 5.2 SYSTÈMES DE RÉFÉRENCE TERRESTRES RÉGIONAUX .. 22

 5.2.1 NAD83 .. 22

 5.2.1.1 NAD83 (1986) ... 23

 5.2.1.2 NAD83 (SCRS) .. 26

 5.2.1.3 Lien ITRF — NAD83 (SCRS) .. 29

 5.2.1.4 Évolution du NAD83 (SCRS) .. 33

 5.2.2 NAD83 et WGS84 .. 36

 5.3 CALCUL GPS .. 37

 5.3.1 Positionnement absolu ... 37

 5.3.2 Positionnement relatif ... 40

 5.3.3 Applications en ligne ... 42

 5.3.4 Mise en contexte pour les positions ... 43

 5.3.5 Mise en contexte pour les vecteurs .. 47

6 LES RÉFÉRENTIELS ALTIMÉTRIQUES ... 51

 6.1 SURFACE DE RÉFÉRENCE ... 51

 6.2 NIVELLEMENT .. 54

 6.3 SYSTÈME DE RÉFÉRENCE ALTIMÉTRIQUE .. 56
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.1</td>
<td>Niveau moyen de la mer</td>
<td>57</td>
</tr>
<tr>
<td>6.3.2</td>
<td>CGVD28</td>
<td>60</td>
</tr>
<tr>
<td>6.3.2.1</td>
<td>Principales erreurs dans le CGVD28</td>
<td>63</td>
</tr>
<tr>
<td>6.3.2.2</td>
<td>Limites du CGVD28</td>
<td>64</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Infrastructure altimétrique</td>
<td>65</td>
</tr>
<tr>
<td>6.4</td>
<td>Modèle de Géoidé</td>
<td>67</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Géoidé hybride</td>
<td>70</td>
</tr>
<tr>
<td>6.5</td>
<td>Calcul d’Altitudes CGVD28</td>
<td>72</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Analyses métriques</td>
<td>73</td>
</tr>
<tr>
<td>7</td>
<td>Les Référentiels de Demain</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Bibliographie</td>
<td>81</td>
</tr>
<tr>
<td>ANNEXE A</td>
<td>ITRF2005</td>
<td>87</td>
</tr>
<tr>
<td>ANNEXE B</td>
<td>Versions du NAD83 (SCRS)</td>
<td>89</td>
</tr>
<tr>
<td>ANNEXE C</td>
<td>CGVD28 : Décret 630 du 11 Mars 1935</td>
<td>91</td>
</tr>
</tbody>
</table>
Liste des tableaux

Tableau 1 : Vitesse de déplacement ... 6
Tableau 2 : Ellipsoïdes WGS84 et GRS80 ... 21
Tableau 3 : D’ITRF90 à WGS84 (Doppler) .. 21
Tableau 4 : Évolution de la structure WGS84 ... 21
Tableau 5 : Paramètres de transformation ... 24
Tableau 6 : Infrastructure classique au Québec .. 25
Tableau 7 : Critères de classement (m) de l’infrastructure classique 25
Tableau 8 : Infrastructure NAD83 (SCRS) au Québec ... 28
Tableau 9 : Critères de classement NAD83 (SCRS) .. 29
Tableau 10 : Paramètres de transformation ITRF96 (1997.0) → NAD83 (SCRS) 30
Tableau 11 : Paramètres de rotation NNR-NUVEL-1A .. 30
Tableau 12 : Paramètres de transformation ITRF2005 → NAD83 (SCRS) 32
Tableau 13 : Versions de NAD83 (SCRS) .. 34
Tableau 14 : Évolution des versions NAD83 (SCRS) à Kuujjuarapik 35
Tableau 15 : Déviation standard des versions NAD83 (SCRS) à Kuujjuarapik 35
Tableau 16 : Structure de référence de l’IGS ... 40
Tableau 17 : Positions NAD83 (SCRS) à LPOC .. 44
Tableau 18 : Positions NAD83 (SCRS) à VALD ... 44
Tableau 19 : Position moyenne des versions 2, 3 et 3.1 .. 44
Tableau 20 : Différences pour NAD83 (SCRS) moyen ... 45
Tableau 21 : Positions ITRF à LPOC ... 45
Tableau 22 : Positions ITRF à VALD ... 46
Tableau 23 : Différences pour ITRF96 (1997.0) .. 46
Tableau 25 : Différence entre NAD83 (SCRS) et ITRF .. 47
Tableau 28 : Infrastructure altimétrique au Québec ... 66
Tableau 29 : Critères de classement (m) de l’infrastructure altimétrique 66
Tableau 30 : EGM96, CGG2000 et CGG2005 ... 69
Tableau 31 : Altitudes (h, H) et différence d’altitudes pour quatre repères 74
Tableau 32 : CGG2000 et CGG2005 : ITRF et NAD83 (SCRS) 74
Liste des tableaux

Tableau 33 : CGG2000 et CGG2005 : Différence avec N83-28 ... 74
Tableau 34 : HT2.0 – Région Rivière-du-Loup .. 75
Tableau 35 : Altitudes h et H et différence d’altitudes pour huit repères .. 75
Tableau 36 : HT2.0 – Région Kuujjuaq apik ... 76
Tableau 37 : Transformation d’altitudes avec un biais ... 77
Tableau 38 : Transformation d’altitudes avec un plan ... 77
Tableau 39 : Différence d’altitudes (ΔH) CGVD28 – Futur SCRA ... 80
Liste des figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>La structure de la terre</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Les forces influentes</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Les principales plaques tectoniques</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>L’équilibre isostatique</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Le rebond postglaciaire</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Affaissement en Californie</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Baie-Comeau</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Kuujjuarapik</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Schefferville</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>Val-d’Or</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>Les coordonnées cartésiennes et géodésiques</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>L’ellipsoïde et le géoïde</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>Époque d’origine 1997.0</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>Époque d’observation 2008.4</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>Retour à l’époque 1997.0</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>Réseau des stations ITRF</td>
<td>19</td>
</tr>
<tr>
<td>17</td>
<td>Plaque nord-américaine au 1983-12-31</td>
<td>22</td>
</tr>
<tr>
<td>18</td>
<td>Plaque nord-américaine au 2007-12-31</td>
<td>22</td>
</tr>
<tr>
<td>19</td>
<td>Rotation des systèmes</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>Système canadien de contrôle actif</td>
<td>27</td>
</tr>
<tr>
<td>21</td>
<td>Réseau de base canadien</td>
<td>27</td>
</tr>
<tr>
<td>22</td>
<td>Erreurs en position dans le NAD83 (1986)</td>
<td>28</td>
</tr>
<tr>
<td>23</td>
<td>Stations VLBI dans le NAD83</td>
<td>30</td>
</tr>
<tr>
<td>24</td>
<td>Liens entre NAD83 (SCRS) et les ITRF</td>
<td>32</td>
</tr>
<tr>
<td>25</td>
<td>CBN-2 et CBN-4</td>
<td>35</td>
</tr>
<tr>
<td>26</td>
<td>Différence entre NAD83 et WGS84</td>
<td>36</td>
</tr>
<tr>
<td>27</td>
<td>Positionnement absolu</td>
<td>38</td>
</tr>
<tr>
<td>28</td>
<td>Réseau de stations de poursuite mondial</td>
<td>38</td>
</tr>
<tr>
<td>29</td>
<td>Réseau de stations de poursuite nord-américain</td>
<td>39</td>
</tr>
<tr>
<td>30</td>
<td>Positionnement relatif</td>
<td>41</td>
</tr>
<tr>
<td>31</td>
<td>Pesanteur et surface de niveau</td>
<td>51</td>
</tr>
<tr>
<td>32</td>
<td>Surfaces équipotentielles</td>
<td>52</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>33</td>
<td>Convergence des surfaces équipotentielles</td>
<td>54</td>
</tr>
<tr>
<td>34</td>
<td>Nivellement et surfaces équipotentielles</td>
<td>55</td>
</tr>
<tr>
<td>35</td>
<td>Altimétrie satellitaire</td>
<td>57</td>
</tr>
<tr>
<td>36</td>
<td>Topographie de la surface de la mer</td>
<td>58</td>
</tr>
<tr>
<td>37</td>
<td>Niveau moyen de la mer</td>
<td>58</td>
</tr>
<tr>
<td>38</td>
<td>Niveau moyen de la mer et un marégraphe</td>
<td>59</td>
</tr>
<tr>
<td>39</td>
<td>Niveau moyen de la mer et un marégraphe plus une constante</td>
<td>59</td>
</tr>
<tr>
<td>40</td>
<td>Niveau moyen de la mer et trois marégraphes</td>
<td>60</td>
</tr>
<tr>
<td>41</td>
<td>Nivellement de 1928</td>
<td>61</td>
</tr>
<tr>
<td>42</td>
<td>CGVD28 et les surfaces équipotentielles</td>
<td>63</td>
</tr>
<tr>
<td>43</td>
<td>Rehaussement relatif de l’eau à Halifax</td>
<td>65</td>
</tr>
<tr>
<td>44</td>
<td>Le réseau primaire canadien</td>
<td>66</td>
</tr>
<tr>
<td>45</td>
<td>Ondulation du géoïde</td>
<td>67</td>
</tr>
<tr>
<td>46</td>
<td>Géoïde et ellipsoïdes</td>
<td>68</td>
</tr>
<tr>
<td>47</td>
<td>Géoïde mondial EGM96</td>
<td>68</td>
</tr>
<tr>
<td>48</td>
<td>Géoïde canadien CGG2005</td>
<td>69</td>
</tr>
<tr>
<td>49</td>
<td>NAD83 (SCRS), CGVD28 et CGG2000</td>
<td>70</td>
</tr>
<tr>
<td>50</td>
<td>Supernet</td>
<td>71</td>
</tr>
<tr>
<td>51</td>
<td>Logiciel GPS-H</td>
<td>73</td>
</tr>
</tbody>
</table>
Liste des sigles et acronymes

<table>
<thead>
<tr>
<th>Sigle</th>
<th>Acronyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSPOS</td>
<td>Online GPS Processing Service (Australie)</td>
</tr>
<tr>
<td>BIH</td>
<td>Bureau international de l’heure</td>
</tr>
<tr>
<td>BTS84</td>
<td>BIH Terrestrial System of 1984</td>
</tr>
<tr>
<td>CACS</td>
<td>Canadian Active Control System</td>
</tr>
<tr>
<td>CBN</td>
<td>Canadian Base Network</td>
</tr>
<tr>
<td>CGD</td>
<td>Canadian Geodetic Datum</td>
</tr>
<tr>
<td>CGG2000</td>
<td>Canadian Gravimetric Geoid of 2000</td>
</tr>
<tr>
<td>CGG2005</td>
<td>Canadian Gravimetric Geoid of 2005</td>
</tr>
<tr>
<td>CGQ77</td>
<td>Compensation globale du Québec de 1977</td>
</tr>
<tr>
<td>CGVD28</td>
<td>Canadian geodetic vertical datum of 1928</td>
</tr>
<tr>
<td>CORS</td>
<td>Continuously Operating Reference Station (États-Unis)</td>
</tr>
<tr>
<td>CORS96</td>
<td>Version du NAD83 basée sur le réseau CORS</td>
</tr>
<tr>
<td>CSRS</td>
<td>Canadian Spatial Reference System</td>
</tr>
<tr>
<td>DLG</td>
<td>Division des levés géodésiques (Ressources naturelles Canada)</td>
</tr>
<tr>
<td>DMA</td>
<td>Defence Mapping Agency (États-Unis)</td>
</tr>
<tr>
<td>DORIS</td>
<td>Doppler Orbitography by Radio-positioning Integrated on Satellite</td>
</tr>
<tr>
<td>DRG</td>
<td>Direction de la référence géodésique</td>
</tr>
<tr>
<td>ED50</td>
<td>European Datum of 1950</td>
</tr>
<tr>
<td>EGM96</td>
<td>Earth Gravitational Model of 1996</td>
</tr>
<tr>
<td>ETRF89</td>
<td>European Terrestrial Reference Frame of 1989</td>
</tr>
<tr>
<td>ETRS89</td>
<td>European Terrestrial Reference System of 1989</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GPS-H</td>
<td>Logiciel de calcul d’altitude</td>
</tr>
<tr>
<td>GRACE</td>
<td>Gravity Recovery and Climate Experiment</td>
</tr>
<tr>
<td>GRS80</td>
<td>Geodetic Reference System of 1980</td>
</tr>
<tr>
<td>Sigle</td>
<td>Acronyme</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>HT2.0</td>
<td>Height Transformation, version 2.0</td>
</tr>
<tr>
<td>IAU</td>
<td>International Astronomical Union</td>
</tr>
<tr>
<td>ICE-4G</td>
<td>Modèle de rebond postglaciaire</td>
</tr>
<tr>
<td>IDS</td>
<td>International DORIS Service</td>
</tr>
<tr>
<td>IERS</td>
<td>International Earth Rotation and Reference Systems Service</td>
</tr>
<tr>
<td>IGLD</td>
<td>International Great Lakes Datum</td>
</tr>
<tr>
<td>IGS</td>
<td>International GNSS Service</td>
</tr>
<tr>
<td>IGS05</td>
<td>Structure de référence de 2005 (IGS)</td>
</tr>
<tr>
<td>ILRS</td>
<td>International Laser Ranging Service</td>
</tr>
<tr>
<td>ITRF</td>
<td>International Terrestrial Reference Frame</td>
</tr>
<tr>
<td>ITRF2000</td>
<td>International Terrestrial Reference Frame of 2000</td>
</tr>
<tr>
<td>ITRF2005</td>
<td>International Terrestrial Reference Frame of 2005</td>
</tr>
<tr>
<td>ITRF2008</td>
<td>International Terrestrial Reference Frame of 2008</td>
</tr>
<tr>
<td>ITRF89</td>
<td>International Terrestrial Reference Frame of 1989</td>
</tr>
<tr>
<td>ITRF90</td>
<td>International Terrestrial Reference Frame of 1990</td>
</tr>
<tr>
<td>ITRF96</td>
<td>International Terrestrial Reference Frame of 1996</td>
</tr>
<tr>
<td>ITRF97</td>
<td>International Terrestrial Reference Frame of 1997</td>
</tr>
<tr>
<td>ITRS</td>
<td>International Terrestrial Reference System</td>
</tr>
<tr>
<td>IUGG</td>
<td>International Union of Geodesy and Geophysics</td>
</tr>
<tr>
<td>IVS</td>
<td>International VLBI Service</td>
</tr>
<tr>
<td>LLR</td>
<td>Lunar Laser Ranging</td>
</tr>
<tr>
<td>NAD27</td>
<td>North American Datum of 1927</td>
</tr>
<tr>
<td>NAD83</td>
<td>North American Datum of 1983</td>
</tr>
<tr>
<td>NAVD88</td>
<td>North American Vertical Datum of 1988</td>
</tr>
<tr>
<td>NGA</td>
<td>National Geospatial-Intelligence Agency (États-Unis)</td>
</tr>
<tr>
<td>NGS</td>
<td>National Geodetic Survey (États-Unis)</td>
</tr>
<tr>
<td>NGVD29</td>
<td>National Geodetic Vertical Datum of 1929</td>
</tr>
<tr>
<td>NMM</td>
<td>Niveau moyen de la mer</td>
</tr>
<tr>
<td>NMM29</td>
<td>Niveau moyen des mers de 1929</td>
</tr>
</tbody>
</table>
Liste des sigles et acronymes

<table>
<thead>
<tr>
<th>Sigle</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNR-NUVEL-1A</td>
<td>No-net-rotation, Northwestern University Velocity, modèle 1, modification A</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration (États-Unis)</td>
</tr>
<tr>
<td>NSRS</td>
<td>National Spatial Reference System (États-Unis)</td>
</tr>
<tr>
<td>NSWC</td>
<td>Naval Surface Warfare Center (États-Unis)</td>
</tr>
<tr>
<td>OPUS</td>
<td>Online Positioning User Service (États-Unis)</td>
</tr>
<tr>
<td>PPP</td>
<td>Precise Point Positioning (Ressources naturelles Canada)</td>
</tr>
<tr>
<td>RBC</td>
<td>Réseau de base canadien</td>
</tr>
<tr>
<td>RINEX</td>
<td>Receiver Independent Exchange Format</td>
</tr>
<tr>
<td>SCCA</td>
<td>Système canadien de contrôle actif</td>
</tr>
<tr>
<td>SCOUT</td>
<td>Scripps Coordinate Update Tool (États-Unis)</td>
</tr>
<tr>
<td>SCRA</td>
<td>Système canadien de référence altimétrique</td>
</tr>
<tr>
<td>SCRS</td>
<td>Système canadien de référence spatiale</td>
</tr>
<tr>
<td>SLD29</td>
<td>Sea Level Datum of 1929</td>
</tr>
<tr>
<td>SLR</td>
<td>Satellite Laser Ranging</td>
</tr>
<tr>
<td>SOPAC</td>
<td>Scripps Orbit and Permanent Array Center (États-Unis)</td>
</tr>
<tr>
<td>SST</td>
<td>Sea Surface Topography</td>
</tr>
<tr>
<td>TRANSIT</td>
<td>Système de navigation par satellites</td>
</tr>
<tr>
<td>TRNOBS</td>
<td>Logiciel de transformation</td>
</tr>
<tr>
<td>TSM</td>
<td>Topographie de la surface de la mer</td>
</tr>
<tr>
<td>VLBI</td>
<td>Very Long Baseline Interferometry</td>
</tr>
<tr>
<td>WGS72</td>
<td>World Geodetic System of 1972</td>
</tr>
<tr>
<td>WGS84</td>
<td>World Geodetic System of 1984</td>
</tr>
</tbody>
</table>
1 Introduction

La Terre est une structure complexe soumise à différentes forces internes et externes. Leur présence modifie continuellement sa structure. En tant que science qui étudie en fonction du temps les dimensions et la forme de la Terre ainsi que les variations de son champ gravitationnel, la géodésie mesure les variations structurelles et gravitationnelles que subit notre planète. Pour y parvenir, elle met en place des référentiels, ou systèmes de repérage, géodésiques et altimétriques pouvant situer un événement ou un objet dans l’espace et dans le temps.

Avec le lancement de Spoutnik en 1957, la géodésie et ses référentiels entrent dans l’ère spatiale. Auparavant, les référentiels géodésiques, constitués majoritairement de mesures d’angles et de distances, étaient purement planimétriques et généralement régionaux. Aujourd’hui, les référentiels géodésiques, conçus à partir de mesures spatiales, deviennent tridimensionnels, certains quadridimensionnels, internationaux ou régionaux. Qu’ils soient classiques (mesures d’angles et de distances) ou modernes (mesures spatiales), ces référentiels utilisent différents systèmes de coordonnées pour localiser mathématiquement un objet.

Il existe aussi un référentiel « unidimensionnel » pour déterminer l’altitude d’un objet sur la Terre. À la différence d’un référentiel géodésique, ce référentiel altimétrique n’est pas une surface mathématique, mais une surface issue du champ gravitationnel, soit le géoïde. Cette surface particulière issue de la physique de la Terre est une approximation du niveau moyen des mers au repos et de son prolongement sous les continents.

La géodésie moderne introduit de nouveaux termes pour nommer les référentiels géodésiques et altimétriques. Aujourd’hui, il faut parler de « système de référence » et de « structure de référence ». Un système de référence est un concept théorique qui se définit par un ensemble de paramètres et de conventions. La structure de référence est la réalisation concrète d’un système de référence. Pour les référentiels géodésiques, il y a les systèmes de référence terrestres (aussi connu sous le nom de « système de référence géodésique ») et les structures de référence terrestres. Pour les référentiels altimétriques, il y a les systèmes de référence altimétriques et les structures de référence altimétriques. Ces notions seront expliquées dans le présent guide qui se veut à la fois une introduction aux référentiels modernes et une description des référentiels tant géodésiques qu’altimétriques qui ont cours au Québec.

Le guide débute par l’introduction de certaines notions de base utiles à la compréhension des concepts qui seront vus par la suite. Avant d’entrer dans le cœur du sujet, soit les systèmes de référence, il faut avoir une connaissance des phénomènes qui modifient notre planète.
Introduction

(chapitre 2). Ces derniers influencent à divers degrés la réalisation de ces systèmes. Un court rappel des systèmes de coordonnées utilisés sera fait afin de bien comprendre les termes utilisés (chapitre 3). Le chapitre 4 fait un bref retour sur les systèmes de référence classiques établis avant l’ère spatiale, dont le NAD27. Ensuite, au chapitre 5, une description des principaux systèmes de référence terrestres internationaux (ITRS et WGS84) servira de base à la présentation du système de référence terrestre qui a cours au Québec, soit le NAD83, et à ses deux réalisations. Les relations entre ces systèmes de référence et leur influence sur les observations GPS concluront ce chapitre. Avant de décrire le système de référence altimétrique CGVD28 et sa réalisation, le chapitre 6 débutera par le rôle des surfaces équipotentielles et les divers types d’altitudes dans un référentiel altimétrique. Des exemples de calculs d’altitudes permettront de mieux comprendre les limites du CGVD28 à l’ère du GPS. Le chapitre 7 conclura sur les futurs systèmes de référence terrestres et altimétriques.
2 La Terre

La Terre est un corps plastique (flexible) complexe composé de parties solides, semi-rigides et liquides soumises à diverses forces internes et externes. Ces différentes parties sont regroupées pour former les trois principales couches qui constituent la Terre (figure 1) (Bourque, 2010) : la croûte, le manteau et le noyau.

La croûte est la couche rigide sur laquelle nous vivons. Elle est très mince comparativement à la taille de la planète qui fait environ 6 371 km de rayon. Avec une épaisseur moyenne d’environ 30 km, elle peut atteindre 5 km sous les océans et 65 km sous les massifs montagneux. Le manteau est un mélange de couches semi-rigides de plus en plus denses vers le centre sur une épaisseur d’environ 2 800 km. Le noyau, constitué d’une partie liquide plus dense que le manteau sur 2 270 km (noyau externe) et d’une partie solide sur 1 220 km (noyau interne), est le cœur de la planète.

Des forces internes et externes modifient, entre autres, la forme de la Terre, sa vitesse de rotation et son axe de rotation. La figure 2 (DLG, 2006) schématise les principales forces. La modification de la forme de la Terre peut se décrire en fonction des mouvements horizontaux et verticaux qui se produisent au niveau de la croûte.
2.1 *Mouvements horizontaux*

Une plaque lithosphérique, ou tectonique, est constituée de la croûte et de la partie solide du manteau qui est adjacente à la croûte (figure 1). Les phénomènes de convection et de mouvement dans la matière du manteau font bouger, ou dériver, les plaques lithosphériques de quelques centimètres par année (figure 3) (JPL, 2006).

Il existe aussi des mouvements locaux de l’ordre du millimètre par année. En général, ces mouvements proviennent de déformations intraplaques de type faille. Les forces engendrées par la compression due aux plaques environnantes provoquent aussi des mouvements horizontaux.
2.2 Mouvements verticaux

Les mouvements verticaux proviennent de phénomènes régionaux ou locaux et non globaux comme la dérive des plaques tectoniques. Parmi ces phénomènes régionaux, il y a le rebond postglaciaire causé par le soulèvement de la croûte terrestre. Lors de la dernière glaciation, il y a environ 18 000 ans, une épaisse couche de glace, qui pouvait atteindre les 3 km d’épaisseur, couvrait le nord de notre continent. Cette masse a compressé la croûte et une partie du manteau s’est déplacé sur le pourtour de cette masse. Cela a créé un soulèvement en périphérie. Après le retrait de cette masse, la croûte reprend tranquillement sa forme; c’est l’équilibre isostatique (figure 4) (Henton et coll., 2006). En reprenant sa place, le manteau se retire de la périphérie pour reprendre sa place dans la zone de compression. Il en résulte un affaissement en périphérie et un soulèvement là où était située la masse de glace.

Au Canada, le soulèvement peut atteindre plus de 10 mm/a dans le secteur de la baie d’Hudson et un affaissement de quelques millimètres par année dans les provinces maritimes. La figure 5 (Henton et coll., 2004) montre les effets du rebond postglaciaire dans l’Est canadien selon le modèle ICE-4G développé au milieu des années 1990. En périphérie de la zone de décompression maximale, il y a un déplacement horizontal qui peut atteindre quelques millimètres par année. La zone charnière délimitant le soulèvement et l’affaissement se situe quelque part le long du fleuve Saint-Laurent ou au sud de ce dernier selon les différentes analyses faites sur le rebond postglaciaire.

Une autre cause de mouvements horizontaux vient de l’affaissement du sol (subsidence) provoqué par l’assèchement souterrain ou la compaction sédimentaire. Le taux d’affaissement
peut varier de quelques millimètres à quelques centimètres par année. La figure 6 (NGS, 1998) montre clairement l’effet d’un enfoncement annuel de quelques centimètres par année occasionné par le pompage de la nappe phréatique en Californie. À long terme, un tel enfoncement peut avoir un effet sur le sens de l’écoulement de l’eau.

La rencontre de deux plaques tectoniques crée aussi des mouvements. Par exemple, la subduction, processus d’enfoncement d’une plaque dense sous une plaque de faible densité, produit un soulèvement. Cette rencontre engendre aussi un déplacement horizontal si le soulèvement est accompagné d’une compression ou d’un basculement de la plaque.

2.3 Mouvements globaux

Les figures 7, 8, 9 et 10 présentent graphiquement les déplacements horizontaux (latitude et longitude) et verticaux (altitude) dans les villes de Baie-Comeau, Kuujjuarapik, Schefferville et Val-d’Or (JPL, 2008), respectivement. Les données proviennent de stations de poursuite GPS. La vitesse de déplacement de ces sites est résumée dans le tableau 1. La colonne « Horizontal » représente la vitesse de déplacement de la plaque nord-américaine à nos latitudes, soit environ 2 cm/a. Le sens du déplacement à Schefferville (SCH2) est montré dans la figure 3. Les vitesses de la colonne « Altitude » sont représentatives de l’effet du rebond postglaciaire sur la composante altimétrique.

<table>
<thead>
<tr>
<th>Ville</th>
<th>Latitude (mm/a)</th>
<th>Longitude (mm/a)</th>
<th>Horizontal (mm/a)</th>
<th>Altitude (mm/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baie-Comeau</td>
<td>5,9</td>
<td>-15,6</td>
<td>16,7</td>
<td>1,3</td>
</tr>
<tr>
<td>Kuujjuarapik</td>
<td>1,3</td>
<td>-17,5</td>
<td>17,5</td>
<td>10,6</td>
</tr>
<tr>
<td>Schefferville</td>
<td>7,5</td>
<td>-17,7</td>
<td>19,2</td>
<td>10,6</td>
</tr>
<tr>
<td>Val-d’Or</td>
<td>2,2</td>
<td>-17,4</td>
<td>17,6</td>
<td>9,1</td>
</tr>
</tbody>
</table>

Figure 6 : Affaissement en Californie
Guide sur les référentiels géodésiques et altimétriques au Québec
3 Les systèmes de coordonnées

Pour localiser mathématiquement un objet dans un système de référence terrestre, il faut utiliser un système de coordonnées. En géodésie, il existe principalement deux systèmes tridimensionnels de coordonnées : cartésiennes et curvilignes. Dans le système de coordonnées cartésiennes, la position d’un point est définie par trois coordonnées cartésiennes orthogonales (X, Y, Z). Géocentrique par convention, l’axe Z coïncide avec l’axe de rotation de la Terre, le plan XY coïncide avec le plan de l’équateur, l’axe X pointe vers le méridien d’origine et l’axe Y est perpendiculaire au plan XZ (figure 11).

Dans le système de coordonnées curvilignes, la position d’un point est définie par rapport à une surface de référence courbe à l’aide de trois coordonnées curvilignes. En géodésie, cette surface est un ellipsoïde de révolution. Cette surface mathématique ressemble le plus à la forme du géoïde (figure 12). Ce dernier sera décrit au chapitre 6. La dimension de l’ellipsoïde est définie par le demi-grand axe (a) et sa forme par l’aplatissement (f). Le demi-petit axe (b) sert aussi à définir la forme de l’ellipsoïde. Il provient de la relation suivante :

\[b = a (1 - f) \]

Dans le contexte géodésique, les coordonnées curvilignes sont appelées « coordonnées géodésiques », soit la latitude (\(\phi \)), la longitude (\(\lambda \)) et l’altitude (h) (figure 11). La latitude et la longitude sont parfois appelées « coordonnées géographiques ». Le système de coordonnées curvilignes offre la possibilité de différencier la composante planimétrique (\(\phi, \lambda \)) de l’altimétrique (h). Le système de coordonnées cartésiennes n’offre pas cette possibilité.

Les systèmes de coordonnées cartésiennes et géodésiques sont interreliés par la relation suivante :

\[(X, Y, Z) \leftarrow \text{Transformation} \rightarrow (\phi, \lambda, h) \]
La majorité des ouvrages de géodésie décrivent en détail la transformation d'un système de coordonnées à un autre.

L'altitude provenant d'un système de coordonnées géodésiques est appelée « altitude géodésique ». Elle représente la distance entre la surface de l'ellipsoïde et un objet le long de la normale. L'expression « hauteur ellipsoïdale », traduction littérale de l'anglais « ellipsoidal height », se retrouve parfois dans la littérature pour désigner l'altitude géodésique.
4 Les référentiels géodésiques classiques

La plupart des systèmes de référence classiques ont été établis entre la fin du XIXᵉ siècle et le milieu du XXᵉ siècle pour des besoins nationaux et quelques-uns, pour des besoins continentaux. Leur réalisation était basée principalement sur des angles horizontaux et quelques distances puisque les télémètres ont fait leur apparition au cours des années 1950. La grande majorité des mesures de distances utilisées dans les réseaux actuels ont servi à la densification des systèmes de référence classiques et non à leur réalisation. Ces systèmes de référence classiques sont communément appelés « datum géodésique » ou « datum horizontal ».

La mise en place d’un système de référence classique repose généralement sur les deux étapes suivantes : la définition (le système) et la réalisation (la structure).

La définition d’un système consiste à établir l’ensemble des paramètres et des conventions qui serviront à déterminer une position dans ce référentiel. Parmi les paramètres et les conventions, il y a le choix de l’ellipsoïde et de son point fondamental. Ce dernier est aussi appelé « point initial ». La forme et la dimension de l’ellipsoïde sont choisies pour coïncider à peu de chose près avec le niveau moyen des mers du territoire que couvre le système de référence classique. En fonction du territoire couvert, la forme et la dimension de l’ellipsoïde varient ainsi que l’origine de l’ellipsoïde par rapport au centre de la Terre.

Généralement situé au centre du réseau, le point fondamental sert à définir la position et l’orientation de l’ellipsoïde dans l’espace avec les paramètres suivants :

- \(\phi_0 \) : latitude géodésique
- \(\lambda_0 \) : longitude géodésique
- \(N_0 \) : ondulation du géoïde
- \(\xi_0 \) : composante nord-sud de la déviation de la verticale
- \(\eta_0 \) : composante est-ouest de la déviation de la verticale
- \(\delta \alpha_{ij} \) : équation de Laplace

L’ondulation du géoïde représente l’altitude géodésique du géoïde à un point. Le parallélisme de l’axe de rotation de l’ellipsoïde avec celui de la Terre est assuré par l’équation de Laplace (Vaniček et Krakiwsky, 1982), soit :

\[
\delta \alpha_{ij} = A_{ij} - \alpha_{ij} = \eta_0 \tan(\phi_0) + \left[\xi_0 \sin(A_{ij}) - \eta_0 \cos(A_{ij}) \right] \cotan(z_{ij})
\] (1)
Les référentiels géodésiques classiques

où :

\[A_{0j} \]: azimut astronomique vers un point j
\[\alpha_{0j} \]: azimut géodésique vers un point j
\[z_{0j} \]: angle azimuthal vers un point j

En théorie, l’ellipsoïde est tangent au géoïde au point fondamental. Ainsi, l’ondulation du géoïde est nulle et la normale et la verticale (figure 12) sont parallèles. Donc :

\[N_0 = 0 \]
\[\xi_0 = 0 \]
\[\eta_0 = 0 \]

Compte tenu de ces conditions, les coordonnées astronomiques \((\Phi_0, \Lambda_0)\) et géodésiques \((\phi_0, \lambda_0)\) ainsi que les azimuts astronomiques \((A_{0j})\) et géodésiques \((\alpha_{0j})\) vers le point j sont identiques puisque :

\[\xi_0 = \Phi_0 - \phi_0 = 0 \]
\[\eta_0 = (\Lambda_0 - \lambda_0) \cos(\phi_0) = 0 \]

La réalisation consiste à concrétiser le référentiel par la matérialisation des points qui formeront le réseau géodésique, la prise de mesures (angles, distances, observations astronomiques) et la détermination des coordonnées (compensation des observations) des points. Lors de la réalisation, des valeurs au point fondamental peuvent se modifier si des observations astronomiques ont été faites sur plusieurs points bien répartis dans l’ensemble du réseau.

NAD27

Les travaux de densification ont introduit des erreurs aléatoires et systématiques au fur et à mesure de leur progression. Les principaux facteurs responsables de ces erreurs sont des faiblesses dans la géométrie du réseau et l’absence de modèle de géoïde précis. Un manque
de rigueur dans des méthodes de compensation a aussi contribué à propager les erreurs dans les réseaux (Pinch, 1990).

Lors de l’établissement du NAD27 et de sa densification jusqu’aux années 1950, le principal instrument de mesures de distance était la chaîne d’invar. La qualité et surtout la rareté des distances mesurées avant l’ère des télémètres ont introduit des distorsions dans l’échelle du réseau. La forme des réseaux de triangulation est aussi mise en cause. Une combinaison de tous ces facteurs a créé une erreur relative d’environ 27 m de part et d’autre de la baie d’Hudson. Par rapport au point fondamental, l’erreur relative pouvait atteindre les 100 m dans les extrémités nord-est et nord-ouest du Canada.

L’absence de modèles de géoïde précis dans les calculs a aussi introduit des distorsions dans l’échelle du réseau. Pour les calculs des coordonnées, toutes les distances doivent être réduites sur l’ellipsoïde. La réduction des distances requiert la connaissance de l’altitude géodésique (h) à chaque point. Puisque, par définition, l’ellipsoïde coïncidait avec le géoïde, l’ondulation du géoïde (N) était presque toujours ignorée, donc $h \approx H$. Cette approximation introduit une erreur d’échelle de 1 ppm dans la distance pour chaque écart de 6,4 m d’ondulation ignorée dans la réduction des distances.

Dans les années 1970, afin de diminuer les distorsions présentes dans la structure NAD27 sur son territoire, le Service de la géodésie du ministère des Terres et Forêts du Québec a fait compenser tout le réseau géodésique québécois en maintenant fixes des points dans le sud-ouest de la province. Cette compensation appelée « Compensée globale du Québec de 1977 » (CGQ77) était la deuxième réalisation du NAD27 au Québec. Pour la distinguer de la première, le Service de la géodésie la nomma NAD27 (CGQ77). Cette nouvelle réalisation a créé des écarts pouvant atteindre les 15 m dans l’est de la province entre le NAD27 et le NAD27 (CGQ77).
5 Les référentiels géodésiques modernes

Un système de référence terrestre est un concept mathématique, donc théorique. C’est un ensemble de paramètres et de conventions permettant de décrire la position d’un point dans l’espace. La réalisation concrète de ce concept s’appelle une « structure de référence terrestre » (terrestrial reference frame). Elle matérialise le système de référence terrestre par un ensemble de repères physiques liés à la croûte terrestre. La position de chaque repère est connue avec un haut degré d’exactitude dans le système de référence terrestre.

Le système de référence terrestre idéal aurait les caractéristiques suivantes :

- c’est un trièdre tournant avec la Terre;
- son origine (O) coïncide avec le centre des masses de la Terre;
- le trièdre est un système orthogonal (X, Y, Z);
- son échelle de mesure est le mètre.

Il existe deux catégories de systèmes de référence terrestres : global et régional.

5.1 Systèmes de référence terrestres globaux

Le système de référence terrestre global est unique pour la Terre. Sa principale caractéristique réside dans son indépendance par rapport aux plaques tectoniques. Lors de la réalisation de la structure de référence terrestre globale, la position des plaques et de ses repères fondamentaux (△) est gelée à une époque déterminée appelée « époque de référence » (t_0). La figure 13 montre la position du continent nord-américain à l’époque t_0 = 1997.0, soit le 1er janvier 1997. À l’époque d’observation (t), les plaques et leurs repères se sont déplacés, mais la structure de référence terrestre demeure à la même place qu’à l’époque de sa détermination t_0. La figure 14 montre la position du continent nord-américain à l’époque d’observation t = 2008.4. Pour les repères fondamentaux, leur position à l’époque t se calcule à partir de leur position initiale à l’époque de référence (t_0) et de leur vitesse de déplacement à l’aide de l’équation suivante :

\[\mathbf{X}(t) = \mathbf{X}(t_0) + \mathbf{X}(t - t_0) \]

(2)

où \(\mathbf{X} \) est le vecteur position et \(\dot{\mathbf{X}} \) est le vecteur vitesse. Ce dernier s’estime en même temps que la position des points lors de la réalisation de la structure de référence terrestre.
La position des nouveaux repères (▲) se calcule à partir de la position des repères fondamentaux à l’époque t. Si de nouvelles observations sont faites à l’époque 2009.3, il sera alors possible de connaître le déplacement qu’ont subi les nouveaux repères.

Pour certains besoins, il est nécessaire de revenir à l’époque de détermination (t_0) (figure 15). Pour les repères fondamentaux de la structure de référence terrestre, leur position est déjà connue à l’époque t_0. Pour les repères (▲) établis à l’époque t, il n’existe pas de vecteur vitesse. Leur position à l’époque t_0 s’obtient en appliquant la vitesse de déplacement provenant d’un modèle du mouvement des plaques. Un tel modèle est généralement produit lors de la réalisation de la structure de référence terrestre. Il existe aussi des modèles indépendants comme le NNR-NUVEL-1A (DeMets et coll., 1994). NUVEL-1A (Northwestern University Velocity, modèle 1, modification A) est un modèle de déplacement relatif des plaques lithosphériques à la surface du globe. La condition NNR (No-net-rotation) permet d’exprimer les déplacements en termes absolus où la moyenne des mouvements est nulle. L’utilisation d’un modèle du mouvement des plaques, comme NNR-NUVEL-1A, se limite qu’aux mouvements horizontaux. Les mouvements locaux et verticaux, tels que le rebond postglaciaire ou un affaissement, ne sont pas pris en compte par ce type de modèle.

Il est aussi possible de transformer les positions d’une structure de référence terrestre dans une autre dont l’époque de détermination est différente. Ces va-et-vient d’une structure à l’autre et d’une époque à l’autre deviennent de plus en plus complexes et requièrent une connaissance précise du mouvement (volet temporel). Le temps devient donc la quatrième composante dans un système de référence terrestre global.

Le lien entre deux systèmes de référence terrestres s’obtient par une transformation à 7+7 paramètres, soit trois translations (T_x, T_y, T_z), une mise à l’échelle (S) et trois rotations (ε_x, ε_y, ε_z) ainsi que leur dérive temporelle respective (\dot{T}_x, \dot{T}_y, \dot{T}_z, \dot{S}, $\dot{\varepsilon}_x$, $\dot{\varepsilon}_y$, $\dot{\varepsilon}_z$).
L’expression générale pour transformer la position du système de référence A dans le système de référence B est la suivante :

\[
\begin{align*}
\vec{x}_B &= \vec{x}_A + \vec{T} + S \vec{X}_A + R \vec{X}_A \\
\vec{x} &= \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}, \quad \vec{T} &= \begin{pmatrix} T_X \\ T_Y \\ T_Z \end{pmatrix}, \quad R &= \begin{pmatrix} 0 & -\varepsilon_Z & \varepsilon_Y \\ \varepsilon_Z & 0 & -\varepsilon_X \\ -\varepsilon_Y & \varepsilon_X & 0 \end{pmatrix}
\end{align*}
\] (3)

où :
\begin{align*}
\vec{x}_A &: \text{ vecteur position dans le système } A \\
\vec{x}_B &: \text{ vecteur position dans le système } B \\
\vec{T} &: \text{ vecteur de translation} \\
S &: \text{ facteur d'échelle} \\
R &: \text{ matrice de rotation}
\end{align*}

Le volet temporel est appliqué à chaque paramètre (P) ainsi :

\[
P(t) = P(t_0) + \dot{P}(t - t_0)
\] (4)

où \(\dot{P} \) est la dérive temporelle du paramètre entre les époques \(t_0 \) et \(t \). Les équations (3) et (4) s’utilisent pour tout type de système de référence terrestre.

5.1.1 ITRS

L’International Earth Rotation and Reference Systems Service (IERS) (http://www.iers.org/) a été établi en 1987 par l’International Astronomical Union (IAU) et l’International Union of Geodesy and Geophysics (IUGG) pour remplacer le Bureau international de l'heure (BIH) le 1er janvier 1988. Son objectif principal est de servir les communautés d’astronomie, de géodésie et de géophysique en leur fournissant, entre autres, des systèmes de référence terrestre et céleste ainsi que la réalisation de ces systèmes. Le Système international de référence terrestre est issu de ce mandat.
Les caractéristiques principales de l'ITRS (IERS, 2004) sont :

- l'origine coïncide avec le centre des masses de la Terre, y compris ses océans et son atmosphère;
- l'unité de longueur est le mètre;
- l'orientation des axes est celle établie par le BIH (époque 1984.0).

La Structure internationale de référence terrestre (ITRF : International Terrestrial Reference Frame) est la concrétisation de l'ITRS (http://itrf.ensg.ign.fr/). Cette structure est matérialisée par un réseau mondial de quelques centaines de sites sur lesquels se trouvent une ou plusieurs stations de poursuite.

Depuis 1988, l'IERS a coordonné plusieurs réalisations de l'ITRF appelées ITRFy (t0), où y représente l'année des observations les plus récentes utilisées pour les calculs et t0 est l'époque de référence. Pour chacune de ces réalisations, l'IERS publie un rapport technique qui décrit leur mise en place. De plus, il donne pour les stations du réseau de poursuite leur position (X, Y, Z et ses erreurs standards σx, σy, σz en mètres) et leur vitesse de déplacement (Ẋ, Ẏ, Ẍ et ses erreurs standards σẊ, σỲ, σẌ en mètres par année) à l'époque de référence. La vitesse de déplacement contient, entre autres, la vitesse de la dérive des plaques tectoniques et du rebond postglaciaire pour les régions nordiques. Ces phénomènes sont les plus importants quant au déplacement absolu d'une station. L'ellipsoïde de référence utilisé pour exprimer la position en coordonnées géodésiques est le GRS80 (Geodetic Reference System of 1980) (Moritz, 1988).

Les mesures pour réaliser l'ITRF proviennent des techniques spatiales de positionnement suivantes :

- VLBI (Very Long Baseline Interferometry) : radio-interférométrie à très longue base;
- SLR (Satellite Laser Ranging) : télémétrie laser sur satellites;
- DORIS (Doppler Orbitography by Radio-positioning Integrated on Satellite) : système de positionnement basé sur l'effet Doppler;
- GPS (Global Positioning System) : système de positionnement global;

La technique LLR a contribué aux solutions de l'ITRF jusqu'en 2000. En combinant ces techniques, les forces et les faiblesses de chacune d'elles contribuent à la mise en place d'une structure qui respecte les caractéristiques de l'ITRS.

materielle par un reseau mondial de quelque 500 stations reparties sur environ 300 sites (figure 16) (ITRF, 2008a). Des sites peuvent accueillir jusqu’a quatre techniques spatiales.

Les donnees qui ont servi a realiser l’ITRF2005 proviennent des series temporelles de la position des stations et des parametres d’orientation de la Terre calculees par differents services internationaux associes a une technique spatiale :

- **Solution hebdomadaire** :
 - International DORIS Service (IDS) (http://ids-doris.org).

- **Solution journaliere** :

En tenant compte de la force de chaque technique, l’ITRF2005 a ete defini comme suit :

- l’echelle et sa derive temporelle sont alignees de telle sorte qu’elles soient nulles par rapport aux series temporelles de l’IVS a l’epoque 2000.0;
- les translations et leur derive temporelle sont alignees de telle sorte qu’elles soient nulles par rapport aux series temporelles de l’ILRS a l’epoque 2000.0;
- l’orientation et sa derive temporelle sont alignees de telle sorte qu’elles soient nulles par rapport a l’ITRF2000 a l’epoque 2000.0.

5.1.2 WGS84

Le Système mondial de référence terrestre WGS84 a été développé et mis en place par la Defence Mapping Agency (DMA) au début des années 1980 spécifiquement pour le système GPS. Aujourd’hui, la National Geospatial-Intelligence Agency (NGA) (www.nga.mil) des États-Unis est l’organisme qui coordonne la maintenance du WGS84.

Les principales caractéristiques du système WGS84 (NIMA, 1997) sont :

- l’origine coïncide avec le centre des masses de la Terre, y compris ses océans et son atmosphère;
- l’unité de longueur est le mètre;
- l’orientation des axes est celle établie par le BIH (époque 1984.0).

Depuis sa mise en place dans les années 1980, plusieurs réalisations du WGS84 ont été coordonnées par la NGA et ses prédécesseurs. Contrairement à l’ITRS, la structure qui concrétise le WGS84 porte le même nom.

La première réalisation du WGS84 provient d’un ensemble de points établis par le système TRANSIT dans le système de référence 9Z-2 du Naval Surface Warfare Center (NSWC), puis aligné sur le système BTS84. Prédécesseur du système GPS, le système TRANSIT utilisait des mesures Doppler pour l’obtention d’une position. Associé à ce type de mesure, il se faisait appeler « système Doppler ». Le système de référence terrestre global BTS84 fut réalisé par le BIH en 1984 à partir de mesures provenant des techniques spatiales VLBI, SLR, LLR et TRANSIT. Cette première réalisation du WGS84 porte parfois le nom de version initiale ou version Doppler.

L’ellipsoïde WGS84 a été spécialement développé pour le système WGS84. Il sert, entre autres, à exprimer les positions en coordonnées géodésiques. Ainsi, le terme WGS84 désigne à la fois le système, la structure et l’ellipsoïde. Cette triple définition cause une certaine confusion chez les utilisateurs. De plus, la dimension de l’ellipsoïde WGS84 coïncide à une fraction près avec celle de l’ellipsoïde GRS80 (tableau 2). Une autre source de confusion chez les utilisateurs.
Les référentiels géodésiques modernes

Tableau 2 : Ellipsoïdes WGS84 et GRS80

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>WGS84</th>
<th>GRS80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demi-grand axe (a)</td>
<td>6 378 137,0000 m</td>
<td>6 378 137,0000 m</td>
</tr>
<tr>
<td>Demi-petit axe (b)</td>
<td>6 356 752,3142 m</td>
<td>6 356 752,3141 m</td>
</tr>
<tr>
<td>Aplatissement (f)</td>
<td>1/298,257223563</td>
<td>1/298,257222101</td>
</tr>
</tbody>
</table>

L’amélioration des réseaux internationaux GPS et des systèmes de référence terrestres démontra que la version Doppler du WGS84 était presque géocentrique. Le tableau 3 (ITRF, 2008b) présente les paramètres de transformation entre l’ITRF90 et la version Doppler du WGS84. L’écart entre les origines de l’ITRF90 et l’ITRF2000 est d’environ 5 cm. Ainsi, l’écart entre l’origine de la version Doppler du WGS84 et le centre des masses de la Terre serait d’environ 0,5 m.

Tableau 3 : D’ITRF90 à WGS84 (Doppler)

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation X (m)</td>
<td>0,060</td>
</tr>
<tr>
<td>Translation Y (m)</td>
<td>-0,517</td>
</tr>
<tr>
<td>Translation Z (m)</td>
<td>-0,223</td>
</tr>
<tr>
<td>Rotation X (")</td>
<td>0,0183</td>
</tr>
<tr>
<td>Rotation Y (")</td>
<td>-0,0003</td>
</tr>
<tr>
<td>Rotation Z (")</td>
<td>0,0070</td>
</tr>
<tr>
<td>Échelle (ppm)</td>
<td>-0,011</td>
</tr>
</tbody>
</table>

Pour assurer une précision adéquate du WGS84, de nouvelles réalisations eurent lieu par la suite (tableau 4). Pour les différencier, la semaine GPS à partir de laquelle la NGA a commencé le calcul des éphémérides précises est ajoutée au nom. Les dates dans le tableau 4 indiquent la mise en place de la réalisation dans les orbites diffusées par les satellites GPS. Avant le 23 janvier 1987, les orbites diffusées étaient référencées dans le système WGS72. Le tableau 4 montre aussi à quelle structure de référence terrestre la réalisation est équivalente et son degré de précision par rapport à cette structure. Aujourd’hui, la structure WGS84 est matérialisée par plus d’une dizaine de stations réparties sur la planète. Compte tenu de son degré de précision par rapport à la solution ITRF2000, WGS84 équivaut en fin de compte à ITRF2000.

Tableau 4 : Évolution de la structure WGS84

<table>
<thead>
<tr>
<th>Nom</th>
<th>De</th>
<th>À</th>
<th>Équivalence</th>
<th>Précision</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS84</td>
<td>1987/01/23</td>
<td>1994/06/28</td>
<td>BTS84</td>
<td>±100 cm</td>
</tr>
<tr>
<td>WGS84 (G730)</td>
<td>1994/06/29</td>
<td>1997/01/28</td>
<td>ITRF92 (1994.0)</td>
<td>±20 cm</td>
</tr>
<tr>
<td>WGS84 (G873)</td>
<td>1997/01/29</td>
<td>2002/01/19</td>
<td>ITRF94 (1997.0)</td>
<td>±10 cm</td>
</tr>
<tr>
<td>WGS84 (G1150)</td>
<td>2002/01/20</td>
<td>–</td>
<td>ITRF2000 (2001.0)</td>
<td>±2 cm</td>
</tr>
</tbody>
</table>
5.2 Systèmes de référence terrestres régionaux

Dans les systèmes de référence terrestres régionaux, le système de coordonnées est fixé à une plaque tectonique. Par exemple, le système nord-américain de référence terrestre NAD83 (North American Datum of 1983) est fixé à la plaque nord-américaine et le système européen de référence terrestre ETRS89 est fixé à la plaque eurasienne. En étant fixé à la plaque tectonique, le système tourne avec elle. Ainsi, les coordonnées ne varient pas dans le temps. Seuls des phénomènes locaux peuvent modifier la position d’un repère.

Les figures 17 et 18 présentent la rotation d’un système de référence terrestre régional par rapport à un système global. La figure 17 montre la situation de la plaque nord-américaine par rapport au système de coordonnées au 31 décembre 1983. Le système régional et le système global coïncident. Vingt-quatre années plus tard, soit le 31 décembre 2007, la plaque n’est plus à la même place (figure 18), mais les coordonnées restent inchangées puisque le système terrestre régional et la plaque ne font qu’un. Par contre, dans le système global, les coordonnées ne sont plus les mêmes. La différence de coordonnées entre ces deux époques représenterait un déplacement d’environ 48 cm, étant donné que la vitesse de déplacement de la plaque au Canada est d’environ 2 cm/a.

5.2.1 NAD83

Le système de référence terrestre en vigueur en Amérique du Nord est le NAD83. Il remplaça le système de référence classique NAD27 au début des années 1990 pour les raisons qui suivent. L’émergence des techniques de positionnement spatial dans les années 1960 et 1970 ainsi que l’utilisation de télémètres de plus en plus précis démontra que le NAD27 ne répondait plus à la précision et aux critères exigés pour ces techniques, surtout pour celles du positionnement spatial. Par exemple, son origine était à environ 250 m du centre des masses de la Terre. Le NAD27 devait céder sa place à un référentiel moderne.
Les principales caractéristiques du système NAD83 sont :

- l’origine coïncide avec le centre des masses de la Terre, y compris ses océans et son atmosphère;
- l’unité de longueur est le mètre;
- l’orientation des axes est celle établie par le BIH (époque 1984.0).

Comme mentionné un peu plus haut, le NAD83 est attaché à la partie stable de la plaque nord-américaine à une époque déterminée (31 décembre 1983).

Il existe deux réalisations majeures de ce système : le NAD83 (1986) et le NAD83 (SCRS). Le terme entre parenthèses sert à différencier les deux réalisations. L’absence de ce terme désigne le système.

5.2.1.1 **NAD83 (1986)**

Le NAD83 (1986), aussi appelé « NAD83 d’origine », est une structure de référence classique (planimétrique) compensée en 1986 (Schwarz, 1989). Cette structure est l’aboutissement d’une compensation nord-américaine multisource de plus de 266 400 points incluant quelque 7 500 points du réseau primaire canadien. Les données provenaient de trois techniques : des observations classiques (angles, distances, azimuts astronomiques) et des positions obtenues avec le système de positionnement TRANSIT (communément appelé « point Doppler ») ainsi que de la technique VLBI. La contribution de chacune de ces techniques dans la compensation est la suivante :

- près de 1 780 000 observations classiques;
- plus de 1 300 positions TRANSIT;
- près de 50 positions VLBI.

Pour compenser cette masse de données, la stratégie retenue fut celle des blocs d’Helmert. Il a fallu former près de 340 blocs d’Helmert pour estimer plus de 928 700 paramètres. Les calculs ont été effectués sur l’ellipsoïde GRS80.

Des transformations ont été appliquées à chacune des trois techniques pour les rendre compatibles entre elles et les aligner sur le BTS84. Les paramètres de transformation appliqués aux différentes techniques sont présentés dans le tableau 5 et les rotations sont schématisées dans la figure 19 (Schwarz, 1989). Les positions TRANSIT ont subi la même transformation que celles ayant servi à rendre le WGS84 géocentrique. Tout comme dans les ITRF, le VLBI a assuré la mise à l’échelle.
Tableau 5 : Paramètres de transformation

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Classique</th>
<th>TRANSIT</th>
<th>VLBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation X (m)</td>
<td>–</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Translation Y (m)</td>
<td>–</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Translation Z (m)</td>
<td>–</td>
<td>4,5</td>
<td>0</td>
</tr>
<tr>
<td>Rotation X (")</td>
<td>–</td>
<td>0</td>
<td>0,020</td>
</tr>
<tr>
<td>Rotation Y (")</td>
<td>–</td>
<td>0</td>
<td>0,020</td>
</tr>
<tr>
<td>Rotation Z (")</td>
<td>-0,365</td>
<td>-0,814</td>
<td>0,010</td>
</tr>
<tr>
<td>Échelle (ppm)</td>
<td>-0,237</td>
<td>-0,6</td>
<td>-0,075</td>
</tr>
</tbody>
</table>

Figure 19 : Rotation des systèmes

Une fois la compensation nord-américaine terminée, le Canada a compensé près de 105 000 points provenant des réseaux primaires et secondaires des provinces (Pinch, 1990). Par la suite, le Québec a compensé ses réseaux de 3° et de 4° ordre au début des années 1990.

Le NAD83 a permis d’éliminer des dizaines de mètres d’erreurs en positionnement relatif ou absolu dans le NAD27. La Division des levés géodésiques (DLG) de Ressources naturelles Canada estime que l’exactitude absolue du NAD83 (1986) varie de quelques centimètres à plus de 2 m avec une moyenne de 0,3 m (DLG, 2008a). Quant à l’exactitude relative, elle est meilleure que celle du NAD27 ou du NAD27 (CGQ77) au Québec.

Dans le NAD83 (1986), la hiérarchie dans les réseaux est demeurée identique à celle utilisée dans le NAD27. Le tableau 6 présente la hiérarchie des réseaux classiques NAD27 et NAD83 (1986) tels qu’ils ont été établis au Québec.
À la position de chaque point géodésique est associé un critère de qualité métrique. La Direction de la référence géodésique (DRG) du ministère des Ressources naturelles et de la Faune du Québec utilise quatre catégories, ou classes, pour décrire la qualité métrique de la coordonnée. Les coordonnées qui ne respectent pas les critères métriques sont hors classe (classe D) et ne sont pas disponibles pour les utilisateurs. Le classement se fait à partir de l’erreur standard (σ) de la position issue de la compensation des données. Le tableau 7 présente, pour une classe et un ordre donnés, la limite maximale permise en latitude et en longitude. Les ordres IA, IB et IC servent pour les points établis par intersection.

Tableau 6 : Infrastructure classique au Québec

<table>
<thead>
<tr>
<th>Réseau</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milieu</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Distance moyenne entre les points (km)</td>
<td>8</td>
<td>20</td>
<td>30</td>
<td>2,5</td>
</tr>
<tr>
<td>Distance minimale entre les points (km)</td>
<td>5</td>
<td>12</td>
<td>20</td>
<td>1,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Réseau</th>
<th>Milieu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 : primaire</td>
<td>A : urbain</td>
</tr>
<tr>
<td>2 : secondaire</td>
<td>B : semi-urbain</td>
</tr>
<tr>
<td>3 : tertiaire</td>
<td>C : non développé</td>
</tr>
<tr>
<td>4 : complémentaire</td>
<td></td>
</tr>
</tbody>
</table>

NAD83 (1986) et GPS

L’implantation du NAD83 (1986) s’est terminée en pleine ascension du système GPS. Dès la fin des années 1980, les faiblesses internes du NAD83 (1986) ont commencé à poindre à l’horizon avec une utilisation de plus en plus courante du GPS. Une des premières constatations fut le manque de compatibilité de cette structure avec les techniques spatiales. Malgré la compensation d’observations classiques dans une structure moderne géocentrique, le NAD83 (1986) demeure avant tout un « datum planimétrique ». Or, le GPS, ou toute autre technique spatiale, opère dans un environnement tridimensionnel. L’absence d’altitude géodésique (h) crée un problème pour intégrer des mesures GPS dans le NAD83 (1986). Il devient évident qu’il faut se fier à un modèle de géoïde pour obtenir une altitude géodésique aux points qui ont une altitude orthométrique (H) connue. Le chapitre 6 sur les référentiels...
altimétriques présentera les limites de l’utilisation d’une altitude orthométrique et d’un modèle de géoïde pour l’obtention d’une altitude géodésique.

Une autre constatation fut que le NAD83 (1986) n’était pas aussi géocentrique qu’il devait l’être. L’origine est à environ 2,2 m du centre des masses de la Terre. Ce décalage est principalement causé par l’inexactitude des points Doppler qui ont servi de points d’appui dans la compensation des observations classiques. Les positions établies par le système TRANSIT avaient une précision d’environ 1 m (3D). Comme les points d’appui n’étaient localisés que sur le continent, cela a aussi contribué à décaler l’origine.

La précision du système GPS en positionnement relatif est de loin supérieure aux observations classiques pour des besoins géodésiques. Le GPS a fait ressortir la qualité hétérogène des observations classiques causée par l’imprécision des instruments classiques. Il ne faut pas oublier que les observations classiques qui ont été utilisées dans la compensation ont été prises sur une longue période de temps avec plusieurs générations d’instruments. Le GPS a aussi fait ressortir des faiblesses dans la structure des réseaux classiques étant donné l’absence de mesures entre des points ou des polygonales.

Ces constatations, jumelées à l’avènement des systèmes de référence terrestres globaux, poussèrent les organismes nord-américains de géodésie à revoir la structure NAD83 implantée quelques années auparavant.

5.2.1.2 NAD83 (SCRS)

L'autre solution était de lier le plus exactement possible le NAD83 à l'ITRS à partir des stations VLBI communes. Ces stations serviront à estimer les paramètres de transformation entre deux réalisations distinctes. La section 5.2.1.3 donnera les détails de ce lien.

En même temps qu’elle réfléchissait sur l’amélioration du NAD83, la DLG décida de maintenir et même d’améliorer son réseau de stations de poursuite qui capte en permanence des mesures GPS. Ce réseau constituera l’assise d’une nouvelle infrastructure dotée d’une composante active, soit le réseau de stations de poursuite, et d’une composante passive à mettre en place. La composante active est appelée le Système canadien de contrôle actif (SCCA) (Canadian Active Control System : CACS). Aujourd'hui, près d'une cinquantaine de stations de poursuite compose le SCCA (figure 20) (DLG, 2008b). Quelques-unes d’entre elles font partie du réseau de stations de poursuite de l’ITRF. Elles possèdent ainsi des positions dans diverses solutions ITRF. Avec les paramètres de transformation qui lient NAD83 et ITRS, il est alors possible de donner une position NAD83 (SCRS) à ces stations de poursuite.

La composante passive, qui est le fruit d’une collaboration avec les provinces, est un réseau constitué d’environ 160 points matérialisés par des piliers de béton surmonté d’une plaque à centrage forcé (figure 21) (DLG, 2008c). Appelé « Réseau de base canadien » (RBC) (Canadian Base Network : CBN), la position des points de ce réseau est déterminée dans l’ITRS avec une grande précision grâce aux mesures GPS faites simultanément avec le SCCA. Avec les paramètres de transformation qui lient NAD83 et ITRS, il est alors possible de donner une position NAD83 (SCRS) à ces points.

La DLG estime que l’exactitude absolue du NAD83 (SCRS) est de l’ordre de quelques centimètres ou mieux, soit l’exactitude des récentes versions de l’ITRF (DLG, 2008a). La figure 22 (Craymer, 2006a) montre les erreurs internes du NAD83 (1986) obtenues par la
différence entre la position NAD83 (SCRS) et la position NAD83 (1986) à l'échelle canadienne. Globalement, ces erreurs semblent aléatoires. Par contre, localement, elles peuvent être systématiques. Il est important de rappeler que le NAD83 (1986) et le NAD83 (SCRS) sont deux réalisations fondamentalement différentes du même système de référence terrestre NAD83.

Figure 22 : Erreurs en position dans le NAD83 (1986)

Afin de distinguer l’infrastructure classique NAD83 (1986) de l’infrastructure spatiale NAD83 (SCRS) au Québec, la DRG a implanté une nouvelle hiérarchie (tableau 8).

Tableau 8 : Infrastructure NAD83 (SCRS) au Québec

<table>
<thead>
<tr>
<th>Niveau</th>
<th>Équivalence</th>
<th>Distance entre les points</th>
<th>Méthode</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>SCCA</td>
<td>1 000 à 1 500 km</td>
<td>GPS</td>
</tr>
<tr>
<td>A1</td>
<td>RBC</td>
<td>100 à 500 km</td>
<td>GPS</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>environ 50 km</td>
<td>GPS</td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td>5 à 15 km</td>
<td>GPS</td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td>plus de 5 km</td>
<td>GPS</td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td>moins de 5 km</td>
<td>GPS</td>
</tr>
<tr>
<td>C1</td>
<td>Réseau primaire</td>
<td>20 km</td>
<td>Classique</td>
</tr>
<tr>
<td>C2</td>
<td>Réseaux secondaires</td>
<td>5 km</td>
<td>Classique</td>
</tr>
<tr>
<td>C3</td>
<td>Réseaux tertiaires</td>
<td>1 à 2 km</td>
<td>Classique</td>
</tr>
<tr>
<td>C4</td>
<td>Réseaux urbains</td>
<td>200 à 500 m</td>
<td>Classique</td>
</tr>
<tr>
<td>CI</td>
<td>Points intersectés</td>
<td></td>
<td>Classique</td>
</tr>
</tbody>
</table>

La notion d’ordre a été remplacée par celle de niveau. Le niveau A constitue le réseau de grande précision. Plus de 1 900 points forment ce réseau. Le niveau A2 est une première densification du RBC qui se nomme A1 dans la hiérarchie québécoise. Avec le temps, la DLG a converti quelques points du RBC en station du SCCA. Dans l’infrastructure québécoise, ces
Les référentiels géodésiques modernes

points demeurent dans leur niveau A1 d’origine. Le niveau B est le réseau de densification et il est constitué par plus de 20 000 points. Le mode opératoire pour établir le niveau B est moins rigoureux que celui des niveaux A2 et A3, mais la qualité métrique n’en est pas pour autant moindre.

Le niveau C, soit le réseau classique, est la partie non spatiale de l’infrastructure NAD83 (SCRS) du Québec. Les positions des quelque 41 000 points de ce niveau proviennent de la compensation d’observations classiques appuyée sur des points de niveaux A et B. Cette compensation a produit une structure purement planimétrique. Les points du niveau C n’ont donc pas d’altitude géodésique en NAD83 (SCRS). Ainsi, pour les travaux par méthode GPS, il est recommandé d’utiliser seulement les points des niveaux A et B. Le niveau CI contient les points déterminés par la méthode d’intersection. Les clochers d’église représentent la majorité des points du niveau CI.

Le tableau 9 donne les critères de classement utilisés par la DRG pour toute son infrastructure NAD83 (SCRS). Ces critères sont basés sur l’erreur standard (σ) issue de la compensation géodésique. Le critère de classement en planimétrie indique que la latitude (ϕ) et la longitude (λ) respectent ce critère. Par exemple, si la latitude est de classe 1 et la longitude de classe 2, alors ce point aura une classe 2 en planimétrie. Les coordonnées qui ne respectent pas les critères métriques sont hors classe (classe D) et inaccessibles aux utilisateurs. Des quelque 41 000 points compensés dans le niveau C, près de 31 800 points parmi ceux-ci respectent le critère des classes 1, 2 ou 3.

Tableau 9 : Critères de classement NAD83 (SCRS)

<table>
<thead>
<tr>
<th>Classe</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planimétrie (ϕ, λ)</td>
<td>σ ≤ 0,01 m</td>
<td>0,01 m < σ ≤ 0,03 m</td>
<td>0,03 m < σ ≤ 0,06 m</td>
<td>0,06 m < σ</td>
</tr>
<tr>
<td>Altimétrie (h)</td>
<td>σ ≤ 0,02 m</td>
<td>0,02 m < σ ≤ 0,06 m</td>
<td>0,06 m < σ ≤ 0,10 m</td>
<td>0,10 m < σ</td>
</tr>
</tbody>
</table>

5.2.1.3 **Lien ITRF — NAD83 (SCRS)**

Lors de la compensation qui détermina des positions en NAD83 (1986), seules les stations issues des techniques spatiales VLBI et TRANSIT obtinrent des positions tridimensionnelles. De ces deux techniques, VLBI est l’unique technique utilisée dans la réalisation des ITRF. Ainsi, certaines stations VLBI possèdent une position tridimensionnelle en NAD83 (1986) et dans les réalisations ITRF. Il est alors possible d’estimer des paramètres de transformation à une époque donnée. Dès lors, une position ITRF peut être transformée en position NAD83 (SCRS).
La première transformation est basée sur les positions ITRF89 et NAD83 (1986) de 11 stations VLBI situées aux États-Unis (Soler et coll., 1992). Elle confirma l’écart d’environ 2,2 m entre les points d’origine de ces deux structures.

Tableau 10 : Paramètres de transformation ITRF96 (1997.0) → NAD83 (SCRS)

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_X</td>
<td>0,9910 m</td>
</tr>
<tr>
<td>T_Y</td>
<td>-1,9072 m</td>
</tr>
<tr>
<td>T_Z</td>
<td>-0,5129 m</td>
</tr>
<tr>
<td>ϵ_X</td>
<td>-25,790 m°</td>
</tr>
<tr>
<td>ϵ_Y</td>
<td>-9,650 m°</td>
</tr>
<tr>
<td>ϵ_Z</td>
<td>-11,660 m°</td>
</tr>
<tr>
<td>S, m°</td>
<td>0,00 ppb</td>
</tr>
</tbody>
</table>

$m°$: milliseconde

Tableau 11 : Paramètres de rotation NNR-NUVEL-1A

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur (milliseconde/année)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\dot{\epsilon}_X$</td>
<td>-0,0532</td>
</tr>
<tr>
<td>$\dot{\epsilon}_Y$</td>
<td>0,7423</td>
</tr>
<tr>
<td>$\dot{\epsilon}_Z$</td>
<td>0,0316</td>
</tr>
</tbody>
</table>

$m°$: milliseconde

ppb : partie par milliard (10^{-3} ppm)
L’expression mathématique de la transformation ITRF96 en NAD83 (SCRS) est la suivante :

\[
\begin{align*}
\vec{X}^N &= \vec{T} + \left[R + \dot{R}^N (t - t_0) \right] \vec{X}_{96}^I (t) \\
\dot{R}^N &= \begin{pmatrix}
0 & -\dot{\epsilon}_Z & \dot{\epsilon}_V \\
\dot{\epsilon}_Z & 0 & -\dot{\epsilon}_X \\
-\dot{\epsilon}_V & \dot{\epsilon}_X & 0
\end{pmatrix}
\end{align*}
\]

où :
\begin{itemize}
 \item \(\vec{X}^N \) : vecteur position dans la structure NAD83 (SCRS)
 \item \(\vec{X}_{96}^I \) : vecteur position dans la structure ITRF96
 \item \(\dot{R}^N \) : matrice de rotation temporelle (NNR-NUVEL-1A)
 \item \(t_0 \) : époque de référence (1997.0)
\end{itemize}

Grâce au lien avec le système international, les trois paramètres de translation \((T_x, T_y, T_z)\) confirment que le système de référence terrestre NAD83 est presque géocentrique.

Équation générale de transformation

Depuis l’ITRF96, l’ITRF a évolué avec la mise en place des ITRF97, ITRF2000 et ITRF2005. À chaque nouvelle réalisation, l’IERS détermine les 7+7 paramètres qui lient cette réalisation à sa précédente (section 5.1.1). L’introduction de ces paramètres dans l’équation (5) donne l’expression mathématique générale suivante pour transformer une position ITRF quelconque en NAD83 (SCRS) :

\[
\begin{align*}
\vec{X}^N &= \left[\vec{T}(t_0) + \dot{T}(t - t_0) \right] + \left[1 + S(t_0) + \dot{S}(t - t_0) \right] \vec{X}_{y}^I (t) + \left[R(t_0) + \dot{R}(t - t_0) \right] \vec{X}_{y}^I (t) \\
\end{align*}
\]

où :
\begin{itemize}
 \item \(\vec{X}^N \) : vecteur position dans la structure NAD83 (SCRS)
 \item \(\vec{X}_{y}^I \) : vecteur position dans une des structures ITRFy
 \item \(\vec{T} \) : dérive temporelle du vecteur de translation \(\dot{T} \)
 \item \(\dot{S} \) : dérive temporelle du facteur d’échelle \(S \)
 \item \(\dot{R} \) : dérive temporelle de la matrice de rotation \(R \)
 \item \(t \) : époque d’observation
 \item \(t_0 \) : époque de référence (1997.0)
\end{itemize}
La figure 24 résume les liens entre une position ITRF à une époque quelconque \(t \) et le NAD83 (SCRS) et vice versa. Contrairement à ce qui est écrit dans le paragraphe précédent, les paramètres de transformation utilisés entre l'ITRF96 et l'ITRF97 ne sont pas ceux de l'IERS. Le Canada et les États-Unis ont plutôt retenu les paramètres de l'IGS (Soler et Snay, 2004).

Les valeurs des paramètres de cette transformation pour la structure ITRF2005 sont présentées dans le tableau 12 (Craymer, 2006b). Les paramètres de rotation provenant du modèle NNR-NUVEL-1A (tableau 11) sont inclus dans les paramètres \(\dot{\varepsilon}_X \), \(\dot{\varepsilon}_Y \) et \(\dot{\varepsilon}_Z \) de la matrice de dérive temporelle \(\dot{\mathbf{R}} \).

Tableau 12 : Paramètres de transformation ITRF2005 → NAD83 (SCRS)

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_X(t_0))</td>
<td>0,9963 m</td>
<td>(\dot{T}_X)</td>
<td>0,0005 m/a</td>
</tr>
<tr>
<td>(T_Y(t_0))</td>
<td>-1,9024 m</td>
<td>(\dot{T}_Y)</td>
<td>-0,0006 m/a</td>
</tr>
<tr>
<td>(T_Z(t_0))</td>
<td>-0,5219 m</td>
<td>(\dot{T}_Z)</td>
<td>-0,0013 m/a</td>
</tr>
<tr>
<td>(\varepsilon_X(t_0))</td>
<td>-25,915 m"</td>
<td>(\dot{\varepsilon}_X)</td>
<td>-0,067 m"/a</td>
</tr>
<tr>
<td>(\varepsilon_Y(t_0))</td>
<td>-9,426 m"</td>
<td>(\dot{\varepsilon}_Y)</td>
<td>0,757 m"/a</td>
</tr>
<tr>
<td>(\varepsilon_Z(t_0))</td>
<td>-11,599 m"</td>
<td>(\dot{\varepsilon}_Z)</td>
<td>0,051 m"/a</td>
</tr>
<tr>
<td>(S(t_0))</td>
<td>0,775 ppb</td>
<td>(\dot{S})</td>
<td>-0,102 ppb/a</td>
</tr>
</tbody>
</table>

m": milliseconde
ppb : partie par milliard (10^{-9} ppm)
\(t_0 = 1997.0 \)
La DLG a développé le logiciel TRNOBS pour faciliter la transformation d’une coordonnée NAD83 (SCRS) dans une des solutions de l’ITRF à une époque donnée et vice versa. TRNOBS permet aussi de transformer des vecteurs dans ces différentes solutions. Une version en ligne de TRNOBS sur le site Internet de la DLG permet de transformer des coordonnées (http://www.geod.nrcan.gc.ca/tools-outils/trnobs_f.php).

5.2.1.4 Évolution du NAD83 (SCRS)

Le NAD83 (SCRS) évolue dans le temps tout comme les structures ITRF et WGS84. Une nouvelle version s’associe normalement à de récentes mesures spatiales sur l’ensemble du RBC. Le processus de calcul consiste à déterminer les coordonnées ITRFy à l’époque d’observation (t) pour l’ensemble des points du RBC et des stations du SCCA pour ensuite les transformer en NAD83 (SCRS) selon l’équation (6) schématisée dans la figure 24. La procédure pour le calcul des coordonnées ITRFy (t) est expliquée ci-après.

La section 5.2.1.2 mentionne que quelques stations du SCCA font partie du réseau ITRF. Elles possèdent donc une position ITRF à l’époque de référence (t₀) ainsi qu’un vecteur vitesse (\(\dot{\mathbf{x}} \)). Si l’époque d’observation (t) diffère de l’époque de référence (t₀), il faut déterminer les positions ITRF à l’époque d’observation. Cette position s’obtient par :

\[
\mathbf{x}'_y (t) = \mathbf{x}'_y (t_0) + \mathbf{x}'_y (t - t_0)
\]

Les stations du SCCA du réseau ITRF servent de points d’appui pour le calcul des coordonnées ITRFy (t) des autres stations du SCCA. Par la suite, les mesures spatiales faites sur le RBC sont traitées en s’appuyant sur les coordonnées ITRFy (t) des stations du SCCA. Ainsi, les composantes actives SCCA et passives RBC sont connues en ITRFy (t) et peuvent alors être transformées en NAD83 (SCRS).

Au cours des années, quelques versions du NAD83 (SCRS) ont vu le jour. Les principales caractéristiques des versions connues en avril 2010 sont présentées dans le tableau 13, à l’exception de la version 1. Basée sur la première transformation, la version 1 eut une distribution restreinte dans la communauté géodésique et, de plus, la documentation à son sujet se fait rare. Compte tenu de l’implication des composantes actives SCCA et passives RBC, la DLG nomme CACS-v et CBN-v les solutions associées à la version v du NAD83 (SCRS). L’annexe B donne une description succincte de ces versions.
Tableau 13 : Versions de NAD83 (SCRS)

<table>
<thead>
<tr>
<th>Version</th>
<th>ITRF</th>
<th>Époque de référence (t₀)</th>
<th>Époque d'observation (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ITRF96</td>
<td>1997.0</td>
<td>1997.0</td>
</tr>
<tr>
<td>3</td>
<td>ITRF97</td>
<td>1997.0</td>
<td>1997.0</td>
</tr>
<tr>
<td>4</td>
<td>ITRF2000</td>
<td>1997.0</td>
<td>2002.0</td>
</tr>
<tr>
<td>5</td>
<td>ITRF2005</td>
<td>2000.0</td>
<td>2006.0</td>
</tr>
</tbody>
</table>

La DLG n’indique pas la version du NAD83 (SCRS) à laquelle se réfèrent les coordonnées qu’elle publie, mais l’époque d’observation. Par exemple, l’époque 1997.0 indique que la coordonnée provient de la version 2, 3 ou 3.1. L’époque 2002.0 indique que la coordonnée provient de la version 4. Pour un point dont l’époque est par exemple 2004.88, cela signifie que ce point ne fait pas partie d’une version courante. Quant à la DRG, puisqu’elle utilise la version CBN-2, une note à cet effet est inscrite sur la fiche signalétique : « (Coordonnées basées sur la compensation du Réseau de base canadien v2.0 mars 1998) ».

La procédure de calcul utilisée pour obtenir une nouvelle version du NAD83 (SCRS) introduit un biais en planimétrie et des variations en altimétrie lorsque l’époque d’observation (t) diffère de l’époque de référence (t₀). Lors des calculs, le volet temporel est géré par deux approches différentes : une vitesse de déplacement annuelle provenant du vecteur vitesse issu de l’ITRFy (t₀) pour positionner les stations du SCCA du réseau ITRF à l’époque d’observation et une vitesse de déplacement annuelle provenant du modèle NNR-NUVEL-1A pour positionner les positions ITRFy (t) à l’époque de référence (t₀) lors de la transformation en NAD83 (SCRS). Le vecteur vitesse provenant de l’ITRFy (t₀) est tridimensionnel (horizontal et vertical), alors que le modèle NNR-NUVEL-1A ne modélise que le déplacement horizontal. Ainsi, en revenant à l’époque de référence, seul le déplacement horizontal est pris en compte. Les mouvements verticaux tels que ceux provenant du rebond postglaciaire ne sont pas tenus en compte. De plus, l’utilisation du modèle NNR-NUVEL-1A introduit un biais dans la procédure. Ce modèle surestime la vitesse de déplacement de la plaque tectonique d’environ 2 mm/a (Craymer, 2006a) à nos latitudes.

Exemple de variation

Pour présenter numériquement cette situation, les positions provenant des versions CBN-2, CBN-3, CBN-3.1 et CBN-4 pour le point 942005 du RBC situé à Kuujjuaq seront analysées (tableau 14). Le tableau 15 donne la déviation standard de la position pour chaque version. La figure 25 montre la différence entre les versions CBN-2 et CBN-4 sur les points du RBC au Québec et dans les Maritimes.
Les référentiels géodésiques modernes

Tableau 14 : Évolution des versions NAD83 (SCRS) à Kuujjuarapik

<table>
<thead>
<tr>
<th>Version</th>
<th>Coordonnées géodésiques</th>
<th>Coordonnées MTM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latitude</td>
<td>Longitude</td>
</tr>
<tr>
<td>CBN-2</td>
<td>55° 16’ 42.06215”</td>
<td>77° 44’ 43.54252”</td>
</tr>
<tr>
<td>CBN-3</td>
<td>55° 16’ 42.06216”</td>
<td>77° 44’ 43.54255”</td>
</tr>
<tr>
<td>CBN-3.1</td>
<td>55° 16’ 42.06216”</td>
<td>77° 44’ 43.54252”</td>
</tr>
<tr>
<td>CBN-4</td>
<td>55° 16’ 42.06203”</td>
<td>77° 44’ 43.54218”</td>
</tr>
</tbody>
</table>

Tableau 15 : Déviation standard des versions NAD83 (SCRS) à Kuujjuarapik

<table>
<thead>
<tr>
<th>Version</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBN-2</td>
<td>0,002 m</td>
<td>0,002 m</td>
<td>0,008 m</td>
</tr>
<tr>
<td>CBN-3</td>
<td>0,002 m</td>
<td>0,002 m</td>
<td>0,009 m</td>
</tr>
<tr>
<td>CBN-3.1</td>
<td>0,002 m</td>
<td>0,002 m</td>
<td>0,009 m</td>
</tr>
<tr>
<td>CBN-4</td>
<td>0,001 m</td>
<td>0,001 m</td>
<td>0,003 m</td>
</tr>
</tbody>
</table>

La version 4 présente des écarts un peu plus significatifs par rapport aux trois versions précédentes. Les principaux facteurs à l’origine de ces écarts sont une nouvelle époque d’observation (2002.0) et des variations physiques dues à la dynamique terrestre (rebond postglaciaire). Sur le plan planimétrique, l’utilisation du modèle NNR-NUVEL-1A aurait introduit un biais d’environ 0,010 m, puisqu’il y a cinq années qui séparent les versions 2, 3 et 3.1 ($t = 1997.0$) de la version 4 ($t = 2002.0$). La différence de 0,007 m entre les versions 2 et 4 est de cet ordre de grandeur. Sur le plan altimétrique, la différence est de 0,048 m entre les versions 2 et 4 et de 0,060 m entre les versions 3 et 4. Comme la vitesse du rebond postglaciaire dans ce secteur est d’environ 11 mm/a selon le modèle ICE-4G (figure 5) et la figure 8, ce secteur se serait soulevé d’environ 0,055 m en cinq ans. Le soulèvement théorique correspond au soulèvement observé. À la lumière de ces explications, les écarts en
position de la version 4 par rapport aux versions précédentes ne sont pas dus à des erreurs. Ces écarts sont dus aux époques d’observation différentes et au rebond postglaciaire.

Le Québec utilise la version CBN-2 pour positionner son réseau géodésique. L’écart de ses coordonnées avec de nouvelles versions du NAD83 (SCRS) s’accroîtra au fur et à mesure que le temps s’écoulera. Par exemple, pour une époque d’observation $t = 2007.0$, le biais planimétrique sera d’environ 0,020 m, alors que l’écart altimétrique pourra atteindre les 0,1 m dans le secteur de la baie d’Hudson. L’augmentation du biais en planimétrie et des écarts en altimétrie avec le temps démontre l’importance d’avoir un modèle précis pour suivre les mouvements tridimensionnels de la plaque tectonique nord-américaine, si l’approche actuelle (figure 24) persiste.

5.2.2 NAD83 et WGS84

Par définition, les systèmes NAD83 et WGS84 sont compatibles puisqu’ils possèdent les mêmes caractéristiques et que les ellipsoïdes GRS80 et WGS84 sont (presque) identiques. Ainsi, lors de sa création, le NAD83 (1986) était réputé compatible avec la version Doppler du WGS84.

Dans les faits, les structures NAD83 et WGS84 ne sont pas compatibles. Aujourd’hui, la structure WGS84 est géocentrique, alors que la structure NAD83 ne l’est pas. Malgré les nouvelles versions du WGS84, la NGA indique dans le *Technical Report 8350.2* (NIMA, 1997) qu’il n’y a aucune translation entre le WGS84 et le NAD83. La figure 26 montre la différence entre les réalisations récentes des systèmes WGS84 et NAD83 (Craymer, 2006a). Au Québec, le décalage horizontal est d’environ 1,5 m, alors que le décalage vertical peut atteindre 1,5 m. Les valeurs de ce décalage s’appliquent aussi aux réalisations de l’ITRS. Un exemple de différence sera présenté à la section 5.3.4.

Figure 26 : Différence entre NAD83 et WGS84
La plupart des fabricants de récepteurs GPS utilisent les paramètres publiés par la NGA pour transformer une position WGS84 dans un autre référentiel. Donc, lorsque l’utilisateur choisit le NAD83 comme système de référence, aucune correction n’est appliquée aux positions WGS84.

5.3 Calcul GPS

Le but de cette section est de démontrer l’influence des systèmes de référence terrestres dans le calcul d’une position à partir d’observations GPS. Avant d’aborder le sujet, un bref rappel des techniques et des modes de positionnement sera fait. Leurs descriptions seront succinctes sans toutefois entrer dans les détails techniques. D’excellents ouvrages et sites Internet décrivent en détail ces techniques et modes de positionnement.

Il existe deux techniques pour déterminer une position à partir d’observations GPS, soit le positionnement absolu et le positionnement relatif. Pour chacune de ces techniques, le mode de positionnement peut être le temps réel, c’est-à-dire l’obtention d’une position instantanément, ou le post-traitement, c’est-à-dire l’obtention d’une position une fois les observations terminées. Le choix de la technique et du mode dépend du travail à effectuer. Par exemple, en navigation, il faut connaître sa position immédiatement, alors qu’en géodésie la détermination d’une position très précise n’est possible qu’après les observations.

5.3.1 Positionnement absolu

Le positionnement absolu, aussi appelé « positionnement ponctuel », requiert l’utilisation d’un seul récepteur GPS. Sa position est déterminée par rapport à l’origine de la structure de référence terrestre (figure 27) utilisée pour le calcul de la position des satellites. En mode temps réel, la position du récepteur se calcule avec les éphémérides transmises par chaque satellite GPS. Ces éphémérides contiennent toutes les valeurs pour calculer la position du satellite dans la structure WGS84 à chaque époque d’observation. Ainsi, les positions obtenues en temps réel sont dans la structure WGS84. Il est possible de faire du positionnement absolu en post-traitement.

Tout comme le temps réel, le calcul en post-traitement nécessite de connaître la position des satellites dans un référentiel. Cette position peut être déduite à partir des éphémérides transmises qui ont été enregistrées lors des travaux ou à partir d’éphémérides calculées. Il existe des organismes qui calculent la position et la correction d’horloge des satellites avec une plus grande précision que celle obtenue avec les éphémérides transmises par les satellites GPS. Ces positions et corrections d’horloge précises sont structurées dans un fichier communément appelé « éphémérides précises ».
Les fichiers d'éphémérides précises sont des fichiers de type « texte » structurés selon le format SP3 développé par la National Geodetic Survey (NGS) du National Oceanic and Atmospheric Administration (NOAA — Department of Commerce) des États-Unis. Ils contiennent la position (X, Y, Z) des satellites dans un référentiel déterminé ainsi que les corrections d'horloge. En général, ce sont des fichiers quotidiens (de 0 h à 23 h 45, heure GPS) contenant des données toutes les 15 minutes.

Le principal producteur d'éphémérides précises est l'IGS. Sa mission est d'appuyer la recherche dans les sciences de la Terre, les applications multidisciplinaires et l'éducation en fournissant des données et des produits de la plus haute qualité constituant un standard pour le GNSS. Pour réaliser cette mission, un réseau de stations de poursuite (figure 28) (IGS, 2009) a été implanté ainsi qu'une structure pour la gestion et le traitement des données. La figure 29 (IGS, 2009) présente le réseau de stations en Amérique du Nord.
Les référentiels géodésiques modernes

Les principaux produits offerts par l'IGS sont :

- les orbites GPS précises;
- l'information sur les horloges des satellites GPS et des stations de poursuite;
- la position et la vitesse des stations de poursuite de l'IGS.

L'IGS calcule trois types de solutions d'orbites et de corrections d'horloge afin de répondre aux différents besoins des usagers :

- **Finale** : les produits finaux sont disponibles de 12 à 18 jours plus tard et contiennent 24 heures d'information.
- **Rapide** : les produits rapides sont disponibles vers 17 h (UT) le jour suivant et contiennent 24 heures d'information.
- **Ultrarapide** : les produits ultrarapides sont publiés quatre fois par jour (à 3 h, 9 h, 15 h et 21 h UT) et contiennent 48 heures d'information. La première moitié est calculée à partir d'observations et la deuxième moitié est prédite.

Pour ses propres fins, l'IGS réalise une structure de référence équivalant à la dernière version de l'ITRF. Les orbites de l'IGS sont calculées dans leur référentiel. Le tableau 16 résume l'évolution des référentiels utilisés par l'IGS au cours des dernières années. Les colonnes « Date » et « Semaine GPS » correspondent à la date de mise en service de cette structure pour le calcul des produits de l'IGS. Ainsi, la structure de référence IGS05, alignée sur...
l'ITRF2005, est en vigueur depuis le 5 novembre 2006. Cette date correspond au début de la semaine GPS 1400.

<table>
<thead>
<tr>
<th>Nom</th>
<th>Date</th>
<th>Semaine GPS</th>
<th>Alignée sur</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGS05</td>
<td>2006-11-05</td>
<td>1400</td>
<td>ITRF2005</td>
</tr>
<tr>
<td>IGb00</td>
<td>2004-01-11</td>
<td>1253</td>
<td>ITRF2000</td>
</tr>
<tr>
<td>IGS00</td>
<td>2001-12-02</td>
<td>1143</td>
<td>ITRF2000</td>
</tr>
<tr>
<td>IGS97</td>
<td>2000-06-04</td>
<td>1065</td>
<td>ITRF97</td>
</tr>
<tr>
<td>ITRF97</td>
<td>1999-08-01</td>
<td>1021</td>
<td>---</td>
</tr>
</tbody>
</table>

La DLG calcule aussi des éphémérides GPS précises. À la différence de l'IGS, la DLG calcule les éphémérides dans la structure de référence NAD83 (SCRS). Tout comme l'IGS, la DLG produit des éphémérides rapides et finales et elles sont disponibles dans les mêmes temps.

Il est possible d'obtenir des éphémérides GPS précises dans la structure WGS84 (G1150) de la NGA.

L'utilisation des référentiels WGS84 ou IGS05 (ITRF2005) en post-traitement donne la position à l’époque de l’observation. La comparaison de cette position par rapport à celle obtenue dans la structure de référence NAD83 (SCRS) montrerait l'effet combiné du décalage de son origine par rapport à ces référentiels géocentriques, du mouvement de la plaque tectonique nord-américaine et du rebond postglaciaire. L'utilisation d'éphémérides en NAD83 (SCRS) éliminerait ces biais, à l’exception du rebond postglaciaire et des écarts entre les différentes versions du NAD83 (SCRS). Des exemples numériques seront présentés plus loin.

En résumé, que le positionnement absolu soit fait en temps réel ou en post-traitement, la position du récepteur GPS est toujours associée au référentiel des orbites.

5.3.2 Positionnement relatif

Le positionnement relatif requiert l’utilisation de deux récepteurs GPS simultanément. Un des récepteurs a une position connue (récepteur fixe) dans un référentiel global ou régional. Dans cette technique, la position du deuxième récepteur (récepteur mobile) est déterminée par rapport à la position du récepteur fixe. La méthode consiste à déterminer en temps réel ou en post-traitement les composantes spatiales (ΔX, ΔY, ΔZ) du vecteur entre les deux récepteurs (figure 30).

Le calcul du vecteur entre les deux récepteurs se fait dans le référentiel utilisé pour les orbites des satellites. Le référentiel du récepteur fixe doit être identique à celui utilisé pour les orbites.
Ainsi, si le référentiel des points fixes est l’ITRF2005, le calcul des vecteurs peut se faire avec les éphémérides diffusées (WGS84) ou précises (WGS84, IGS05) puisque ces référentiels sont alignés au centimètre près sur l’ITRF2005. Dans ce cas, il faut que les coordonnées des points fixes soient celles à l’époque d’observation. La DLG utilise cette approche pour calculer les coordonnées de ses réseaux dans un référentiel global avant de les transformer dans la structure NAD83 (SCRS) (section 5.2.1.3)

![Diagram](image)

Figure 30 : Positionnement relatif

Lorsque le référentiel du récepteur fixe n’est pas identique à celui utilisé pour les orbites, la position du récepteur mobile peut en être influencée. Par exemple, si le référentiel des points fixes est le NAD83, l’utilisation du référentiel d’orbite IGS05 à la place du référentiel NAD83 introduit un biais dans les vecteurs. Plusieurs solutions s’offrent à l’utilisateur pour corriger cette situation.

Puisque l’IGS05 est aligné au centimètre près à l’ITRF2005, il est possible d’utiliser la transformation ITRF2005 — NAD83 (SCRS) pour transformer un vecteur calculé dans le référentiel IGS05 vers le référentiel NAD83. L’expression mathématique de cette transformation est la suivante :

$$
\Delta \vec{X}^N(t) = \left[1 + S(t_0) + \dot{S}(t-t_0)\right] \Delta \vec{X}_{2005}^N(t) + \left[R(t_0) + \dot{R}(t-t_0)\right] \Delta \vec{X}_{2005}(t)
$$

(8)

$$
\Delta \vec{x} = \begin{pmatrix}
\Delta X \\
\Delta Y \\
\Delta Z
\end{pmatrix}
$$

où $\Delta \vec{X}^N$ et $\Delta \vec{X}_{2005}$ sont les vecteurs de différence de positions dans les structures NAD83 (SCRS) et ITRF2005, respectivement.
Cette transformation corrige le biais d’environ 0,1 ppm causé principalement par la rotation du vecteur. Plus le vecteur est grand, plus grand sera le biais si aucune transformation n’est appliquée. Un exemple de biais est présenté à la section 5.3.5.

Une approche plus rigoureuse serait de transformer la position NAD83 (SCRS) du point fixe dans l’ITRF2005 à l’époque d’observation, d’effectuer le calcul des vecteurs à l’aide des éphémérides précises de l’IGS et de transformer cette position dans le NAD83 (SCRS). L’approche la plus simple est l’utilisation des éphémérides NAD83 de la DLG lors du calcul des vecteurs lorsque le référentiel des points fixes est le NAD83.

Contrairement au positionnement absolu, il est à peu près impossible de calculer des positions dans le référentiel WGS84 en positionnement relatif. Pour y parvenir, il faut avoir un point dont les coordonnées sont connues dans la structure WGS84 (G1150). Or, les utilisateurs civils n’ont pas accès aux données GPS des stations du réseau de poursuite du système GPS, même si leurs coordonnées sont connues.

Dans le mode temps réel, les orbites sont calculées avec les éphémérides diffusées (WGS84). La position du récepteur fixe peut être en ITRF ou en NAD83. Dans ce mode, les vecteurs sont en général relativement courts (plus petit que 20 km) et le biais produit par l’utilisation de référentiels différents est inférieur à 2 mm. L’effet de ce biais sur la position du récepteur mobile est pratiquement nul.

En résumé, que le positionnement relatif soit fait en temps réel ou en post-traitement, la position du récepteur GPS est toujours associée au référentiel du point de référence. Cependant, cette position peut être influencée par un biais plus ou moins important si le référentiel des orbites est différent de celui du point fixe.

5.3.3 Applications en ligne

Avant de présenter des exemples mettant en relief les différents concepts vus jusqu’ici dans ce chapitre, cette section présente des applications accessibles en ligne sur Internet. Les résultats de l’une de ces applications serviront à mettre en évidence ces concepts.

Ces applications en ligne permettent le calcul de la position d’un point à partir d’un fichier de données GPS dans le format RINEX. Le traitement est optimisé pour des récepteurs de type géodésique (bifréquence). Les calculs sont effectués avec les éphémérides précises qui sont disponibles lors de la demande de traitement. Ces applications sont offertes par divers organismes gouvernementaux de géodésie ou divers centres de recherche.
La DLG a mis en place le service de positionnement absolu précis PPP (Precise Point Positioning) (Mireault et coll., 2008). Les calculs sont effectués dans la structure de référence IGS05 utilisée par l’IGS. Puisque l’IGS05 est alignée avec précision sur l’ITRF2005, le résultat obtenu de PPP est considéré comme une position issue de la structure de référence ITRF2005. Cette position est ensuite transformée en NAD83 (SCRS). La DLG a introduit dans le processus de transformation en NAD83 (SCRS) un modèle qui tient compte des déformations causées par le modèle NNR-NUVEL-1A et le rebond postglaciaire. Avec ce modèle de déformation, l’utilisateur a le choix d’avoir sa position NAD83 (SCRS) à l’époque d’observation, à l’époque 2002.0 pour la version 4 et à l’époque 1997.0 pour les versions 2, 3 et 3.1.

La NGS a mis en place le service de positionnement relatif OPUS (Online Positioning User Service) (www.ngs.noaa.gov/OPUS/). Les calculs sont effectués dans la structure de référence ITRF2000 à partir des trois stations du réseau CORS (Continuously Operating Reference Station) les plus proches avec les éphémérides disponibles (ultrarapides, rapides, finales) de l’IGS. Cette position est transformée en NAD83 (CORS96). Cette dernière est compatible avec la version 4 du NAD83 (SCRS).

D’autres services similaires à OPUS sont offerts. Par exemple, le service de positionnement relatif AUSPOS (Online GPS Processing Service) (www.ga.gov.au/geodesy/sgc/wwwgps/) du Geoscience Australia du gouvernement australien. Les calculs sont effectués dans la structure de référence ITRF2000 avec les éphémérides disponibles (ultrarapides, rapides, finales) de l’IGS. Un autre service de positionnement relatif est le SCOUT (Scripps Coordinate Update Tool) du Scripps Orbit and Permanent Array Center (SOPAC) (http://sopac.ucsd.edu/cgi-bin/SCOUT.cgi). Les calculs sont effectués dans la structure de référence ITRF2005 avec les éphémérides disponibles (ultrarapides, rapides, finales) de l’IGS.

Pour tous ces services en ligne, la position dans le référentiel ITRF est à l’époque d’observation.

5.3.4 Mise en contexte pour les positions

Pour mettre en évidence les différents concepts décrits dans ce chapitre, les données provenant de deux points du RBC, convertis en station du SCCA, seront utilisées. Il s’agit de la station 962002 (LPOC), située à Sainte-Anne-de-la-Pocatière, et de la station 932051 (VALD), située à Val-d’Or. Les données GPS captées le 1er avril 2008 (t = 2008.25) par ces deux stations ont été récupérées sur le site de la DLG. Ce sont les fichiers RINEX LPOC0920.08O et VALD0920.08O qui contiennent 24 heures de données. Pour les besoins de la comparaison, ces deux fichiers ont été envoyés au service en ligne PPP afin d’obtenir une position ITRF2005 et une position NAD83 (SCRS) à l’époque d’observation.
Les tableaux 17 et 18 présentent respectivement la position NAD83 (SCRS) des stations LPOC et VALD dans les versions CBN-2, CBN-3, CBN-3.1 et CBN-4 ainsi que celle issue de PPP. Ce dernier estime la précision des positions NAD83 (SCRS) à 0,003 m en latitude, 0,005 m en longitude et 0,010 m en altitude.

Tableau 17 : Positions NAD83 (SCRS) à LPOC

<table>
<thead>
<tr>
<th>Version</th>
<th>Coordonnées géodésiques</th>
<th>Coordonnées MTM (zone 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latitude</td>
<td>Longitude</td>
</tr>
<tr>
<td>CBN-2</td>
<td>47° 20’ 28,98074”</td>
<td>70° 0’ 30,79594”</td>
</tr>
<tr>
<td>CBN-3</td>
<td>47° 20’ 28,98077”</td>
<td>70° 0’ 30,79609”</td>
</tr>
<tr>
<td>CBN-3.1</td>
<td>47° 20’ 28,98081”</td>
<td>70° 0’ 30,79611”</td>
</tr>
<tr>
<td>CBN-4</td>
<td>47° 20’ 28,98054”</td>
<td>70° 0’ 30,79542”</td>
</tr>
<tr>
<td>PPP</td>
<td>47° 20’ 28,9801”</td>
<td>70° 0’ 30,7948”</td>
</tr>
</tbody>
</table>

Tableau 18 : Positions NAD83 (SCRS) à VALD

<table>
<thead>
<tr>
<th>Version</th>
<th>Coordonnées géodésiques</th>
<th>Coordonnées MTM (zone 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latitude</td>
<td>Longitude</td>
</tr>
<tr>
<td>CBN-2</td>
<td>48° 5’ 49,37144”</td>
<td>77° 33’ 50,98064”</td>
</tr>
<tr>
<td>CBN-3</td>
<td>48° 5’ 49,37147”</td>
<td>77° 33’ 50,98077”</td>
</tr>
<tr>
<td>CBN-3.1</td>
<td>48° 5’ 49,37147”</td>
<td>77° 33’ 50,98080”</td>
</tr>
<tr>
<td>CBN-4</td>
<td>48° 5’ 49,37120”</td>
<td>77° 33’ 50,98027”</td>
</tr>
<tr>
<td>PPP</td>
<td>48° 5’ 49,3711”</td>
<td>77° 33’ 50,9791”</td>
</tr>
</tbody>
</table>

Comme mentionné à la section 5.2.1.4, il n’y a presque pas de différence entre les versions CBN-2, CBN-3 et CBN-3.1. Les tableaux 17 et 18 le confirment. La position moyenne de ces versions est utilisée pour simplifier l’analyse des concepts (tableau 19).

Tableau 19 : Position moyenne des versions 2, 3 et 3.1

<table>
<thead>
<tr>
<th>Station</th>
<th>Nord</th>
<th>Est</th>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPOC</td>
<td>5 244 792,643 m</td>
<td>341 934,889 m</td>
<td>104,285 m</td>
</tr>
<tr>
<td>VALD</td>
<td>5 329 233,351 m</td>
<td>225 544,052 m</td>
<td>313,739 m</td>
</tr>
</tbody>
</table>

L’analyse faite sur les variations de la position du point 942005 (Kuujjuarapik) à la section 5.2.1.4 s’applique ici. Le tableau 20 présente la différence (ΔN, ΔE et Δh) entre la position moyenne NAD83 (SCRS) (tableau 19) et celle des versions CBN-4 et PPP (tableaux 17 et 18) pour les stations LPOC et VALD. Ce tableau présente aussi la variation annuelle de cette différence ($\Delta N/\Delta t$, $\Delta E/\Delta t$, $\Delta h/\Delta t$).
Les référentiels géodésiques modernes

Tableau 20 : Différences pour NAD83 (SCRS) moyen

<table>
<thead>
<tr>
<th></th>
<th>ΔN (m)</th>
<th>ΔE (m)</th>
<th>Δh (m)</th>
<th>ΔN/Δt (m/a)</th>
<th>ΔE/Δt (m/a)</th>
<th>Δh/Δt (m/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version 4 (Δt = 5 ans)</td>
<td>-0,007</td>
<td>0,013</td>
<td>0,013</td>
<td>-0,001</td>
<td>0,003</td>
<td>0,003</td>
</tr>
<tr>
<td>Version PPP (Δt = 11,25 ans)</td>
<td>-0,021</td>
<td>0,026</td>
<td>0,030</td>
<td>-0,002</td>
<td>0,002</td>
<td>0,003</td>
</tr>
<tr>
<td>VALD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version 4 (Δt = 5 ans)</td>
<td>-0,008</td>
<td>0,010</td>
<td>0,032</td>
<td>-0,002</td>
<td>0,002</td>
<td>0,006</td>
</tr>
<tr>
<td>Version PPP (Δt = 11,25 ans)</td>
<td>-0,011</td>
<td>0,034</td>
<td>0,103</td>
<td>-0,001</td>
<td>0,003</td>
<td>0,009</td>
</tr>
</tbody>
</table>

La différence de position en planimétrie et sa variation annuelle correspondent bien en direction et en magnitude à la surestimation de la vitesse de la plaque nord-américaine dans le modèle NNR-NUVEL-1A. La différence de position en altimétrie et sa variation annuelle ne sont pas les mêmes à chacune des stations. Elles sont situées dans des zones de soulèvement différentes causées par le rebond postglaciaire. La variation mesurée avec PPP ne peut à elle seule confirmer un rehaussement à la station LPOC, car elle est trop faible. Il faut rappeler que les altitudes calculées avec des mesures GPS sont beaucoup moins précises que les composantes planimétriques. À la station VALD, la variation mesurée avec PPP est suffisamment grande pour être supérieure à son imprécision et ainsi démontrer qu’il y a un rehaussement significatif. La figure 10 confirme ce fait.

Tableau 21 : Positions ITRF à LPOC

<table>
<thead>
<tr>
<th>Version</th>
<th>Coordonnées géodésiques</th>
<th>Coordonnées MTM (zone 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latitude</td>
<td>Longitude</td>
</tr>
<tr>
<td>ITRF96 (1997.0)</td>
<td>47° 20' 29.01522”</td>
<td>70° 0' 30,79731”</td>
</tr>
<tr>
<td>ITRF97 (1997.0)</td>
<td>47° 20' 29.01495”</td>
<td>70° 0' 30,79794”</td>
</tr>
<tr>
<td>ITRF2000 (1997.0)</td>
<td>47° 20' 29.01527”</td>
<td>70° 0' 30,79794”</td>
</tr>
<tr>
<td>ITRF2005 (1997.0)</td>
<td>47° 20' 29.01531”</td>
<td>70° 0' 30,79796”</td>
</tr>
<tr>
<td>ITRF2005 (2008.25)</td>
<td>47° 20' 29.01805”</td>
<td>70° 0' 30,80758”</td>
</tr>
<tr>
<td>ITRF2005 (PPP)</td>
<td>47° 20' 29.0174”</td>
<td>70° 0' 30,8065”</td>
</tr>
</tbody>
</table>
Pour présenter les variations entre toutes ces positions, le tableau 23 présente la différence (ΔN, ΔE et Δh) entre la position ITRF96 (1997.0) et les autres versions de l’ITRF et de PPP (tableaux 21 et 22) pour les stations LPOC et VALD. Ce tableau présente aussi la variation annuelle à l’époque 2008.25 (ΔN/Δt, ΔE/Δt, Δh/Δt).

Tableau 23 : Différences pour ITRF96 (1997.0)

<table>
<thead>
<tr>
<th>Version</th>
<th>ΔN (m)</th>
<th>ΔE (m)</th>
<th>Δh (m)</th>
<th>ΔN/Δt (m/a)</th>
<th>ΔE/Δt (m/a)</th>
<th>Δh/Δt (m/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITRF97 (1997.0)</td>
<td>-0,008</td>
<td>-0,005</td>
<td>-0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITRF2000 (1997.0)</td>
<td>0,002</td>
<td>-0,014</td>
<td>0,005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITRF2005 (1997.0)</td>
<td>0,003</td>
<td>-0,014</td>
<td>0,003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITRF2005 (2008.25)</td>
<td>0,086</td>
<td>-0,216</td>
<td>0,017</td>
<td>0,008</td>
<td>-0,019</td>
<td>0,001</td>
</tr>
<tr>
<td>ITRF2005 (PPP)</td>
<td>0,067</td>
<td>-0,194</td>
<td>0,041</td>
<td>0,006</td>
<td>-0,017</td>
<td>0,004</td>
</tr>
<tr>
<td>VALD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITRF97 (1997.0)</td>
<td>-0,008</td>
<td>-0,005</td>
<td>-0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITRF2000 (1997.0)</td>
<td>0,001</td>
<td>-0,012</td>
<td>0,006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITRF2005 (1997.0)</td>
<td>0,002</td>
<td>-0,013</td>
<td>0,004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITRF2005 (2008.25)</td>
<td>0,055</td>
<td>-0,222</td>
<td>0,018</td>
<td>0,005</td>
<td>-0,020</td>
<td>0,002</td>
</tr>
<tr>
<td>ITRF2005 (PPP)</td>
<td>0,043</td>
<td>-0,189</td>
<td>0,114</td>
<td>0,004</td>
<td>-0,017</td>
<td>0,010</td>
</tr>
</tbody>
</table>

Pour l’époque 1997.0, les variations présentent principalement les différences entre les solutions ITRF, sauf pour les solutions ITRF2000 et ITRF2005 qui donnent les mêmes positions. Pour la position ITRF2005 (2008.25) des deux stations, la différence planimétrique montre le déplacement de la plaque tectonique nord-américaine en 11,25 ans, soit un déplacement annuel d’environ 0,02 m/a. Quant à la légère différence altimétrique, elle provient du processus de transformation (figure 24) qui ne tient pas compte des mouvements verticaux. Pour la position ITRF2005 (PPP) des deux stations, la différence planimétrique montre aussi le déplacement de la plaque tectonique nord-américaine. Par contre, la différence altimétrique, surtout à la station VALD, est causée par le rebond postglaciaire. La variation annuelle de la position ITRF2005 (PPP) à la station VALD est conforme à celle présentée dans le tableau 1.

<table>
<thead>
<tr>
<th>Station</th>
<th>ΔΔΔΔN (m)</th>
<th>ΔΔΔΔE (m)</th>
<th>ΔΔΔΔh (m)</th>
<th>ΔΔΔΔN/ΔΔΔΔt (m/a)</th>
<th>ΔΔΔΔE/ΔΔΔΔt (m/a)</th>
<th>ΔΔΔΔh/ΔΔΔΔt (m/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPOC</td>
<td>-0,019</td>
<td>0,022</td>
<td>0,024</td>
<td>-0,002</td>
<td>0,002</td>
<td>0,002</td>
</tr>
<tr>
<td>VALD</td>
<td>-0,012</td>
<td>0,033</td>
<td>0,097</td>
<td>-0,001</td>
<td>0,003</td>
<td>0,009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>ΔΔΔΔN (m)</th>
<th>ΔΔΔΔE (m)</th>
<th>ΔΔΔΔh (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPOC</td>
<td>1,063</td>
<td>-0,033</td>
<td>-1,064</td>
</tr>
<tr>
<td>VALD</td>
<td>1,130</td>
<td>-0,227</td>
<td>-1,023</td>
</tr>
</tbody>
</table>

5.3.5 Mise en contexte pour les vecteurs

Pour mettre en évidence les différents concepts décrits dans ce chapitre et leurs effets sur les vecteurs, des vecteurs issus du référentiel ITRF2005 (2008.25) sont transformés dans le référentiel NAD83 (SCRS) avec l’équation (8). L’analyse portera sur trois vecteurs de 100, 250 et 500 km orientés vers le nord et vers l’est. Ces six vecteurs ont comme point d’origine la
Les référentiels géodésiques modernes

station LPOC. Le but de cette section n’est pas d’analyser en profondeur l’effet de la transformation, mais de lui donner un ordre de grandeur.

Le tableau 26 présente les différences ($\delta \Delta X$, $\delta \Delta Y$, $\delta \Delta Z$) et (ΔN, ΔE, Δh) entre les deux référentiels pour les vecteurs de 100, 250 et 500 km orientés vers le nord. Le tableau 27 présente les différences pour les vecteurs de 100, 250 et 500 km orientés vers l’est.

<table>
<thead>
<tr>
<th>100 km</th>
<th>ITRF2005 (2008.25) : ΔX, ΔY, ΔZ</th>
<th>$-25\ 323,199$ m</th>
<th>$69\ 607,252$ m</th>
<th>$67\ 183,987$ m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAD83 (SCRS) : ΔX, ΔY, ΔZ</td>
<td>$-25\ 323,196$ m</td>
<td>$69\ 607,262$ m</td>
<td>$67\ 183,978$ m</td>
</tr>
<tr>
<td>$\delta \Delta X$, $\delta \Delta Y$, $\delta \Delta Z$</td>
<td>0,003 m, 0,010 m, -0,009 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔN, ΔE, Δh</td>
<td>0,000 m, 0,007 m, -0,012 m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>250 km</th>
<th>ITRF2005 (2008.25) : ΔX, ΔY, ΔZ</th>
<th>$-63\ 976,109$ m</th>
<th>$175\ 854,603$ m</th>
<th>$165\ 759,595$ m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAD83 (SCRS) : ΔX, ΔY, ΔZ</td>
<td>$-63\ 976,100$ m</td>
<td>$175\ 854,628$ m</td>
<td>$165\ 759,572$ m</td>
</tr>
<tr>
<td>$\delta \Delta X$, $\delta \Delta Y$, $\delta \Delta Z$</td>
<td>0,009 m, 0,025 m, -0,023 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔN, ΔE, Δh</td>
<td>0,001 m, 0,017 m, -0,031 m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>500 km</th>
<th>ITRF2005 (2008.25) : ΔX, ΔY, ΔZ</th>
<th>$-130\ 125,644$ m</th>
<th>$357\ 683,422$ m</th>
<th>$324\ 052,211$ m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAD83 (SCRS) : ΔX, ΔY, ΔZ</td>
<td>$-130\ 125,627$ m</td>
<td>$357\ 683,470$ m</td>
<td>$324\ 052,164$ m</td>
</tr>
<tr>
<td>$\delta \Delta X$, $\delta \Delta Y$, $\delta \Delta Z$</td>
<td>0,017 m, 0,048 m, -0,047 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔN, ΔE, Δh</td>
<td>0,002 m, 0,033 m, -0,061 m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>100 km</th>
<th>ITRF2005 (2008.25) : ΔX, ΔY, ΔZ</th>
<th>$93\ 563,808$ m</th>
<th>$35\ 267,169$ m</th>
<th>0,000 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAD83 (SCRS) : ΔX, ΔY, ΔZ</td>
<td>$93\ 563,810$ m</td>
<td>$35\ 267,164$ m</td>
<td>-0,004 m</td>
</tr>
<tr>
<td>$\delta \Delta X$, $\delta \Delta Y$, $\delta \Delta Z$</td>
<td>0,002 m, -0,005 m, -0,004 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔN, ΔE, Δh</td>
<td>-0,007 m, 0,000 m, 0,001 m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>250 km</th>
<th>ITRF2005 (2008.25) : ΔX, ΔY, ΔZ</th>
<th>$232\ 204,615$ m</th>
<th>$92\ 145,199$ m</th>
<th>0,000 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAD83 (SCRS) : ΔX, ΔY, ΔZ</td>
<td>$232\ 204,620$ m</td>
<td>$92\ 145,186$ m</td>
<td>-0,011 m</td>
</tr>
<tr>
<td>$\delta \Delta X$, $\delta \Delta Y$, $\delta \Delta Z$</td>
<td>0,005 m, -0,013 m, -0,011 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔN, ΔE, Δh</td>
<td>-0,017 m, 0,000 m, 0,001 m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>500 km</th>
<th>ITRF2005 (2008.25) : ΔX, ΔY, ΔZ</th>
<th>$457\ 908,015$ m</th>
<th>$197\ 127,895$ m</th>
<th>0,000 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAD83 (SCRS) : ΔX, ΔY, ΔZ</td>
<td>$457\ 908,025$ m</td>
<td>$197\ 127,870$ m</td>
<td>-0,023 m</td>
</tr>
<tr>
<td>$\delta \Delta X$, $\delta \Delta Y$, $\delta \Delta Z$</td>
<td>0,010 m, -0,025 m, -0,023 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔN, ΔE, Δh</td>
<td>-0,035 m, -0,002 m, 0,001 m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comme mentionné à la section 5.3.2, plus le vecteur est grand, plus le biais (différence) est grand. Ainsi, pour un vecteur de 500 km orienté vers le nord, l'utilisation du référentiel IGS05 ou WGS84 pour le calcul du vecteur peut introduire un biais de 3 cm en planimétrie et de 6 cm en altimétrie si le point d'origine est dans le référentiel NAD83.

Pour tous travaux GPS sur de grandes distances dans le référentiel NAD83, c'est-à-dire sur plus de 100 km, il est fortement recommandé, et même obligatoire, d'utiliser les éphémérides précises calculées dans le NAD83 par la DLG. À partir de cette distance, le biais commence à équivaloir à la précision qu'il est théoriquement possible d'obtenir pour un vecteur et ainsi d'influencer l'exactitude de la position du récepteur mobile. Par extrapolation, les petits vecteurs (< 20 km), généralement utilisés dans le mode temps réel, sont très peu influencés par l'utilisation de référentiels différents.
6 Les référentiels altimétriques

En raison de ses caractéristiques particulières, le référentiel altimétrique évolue dans un monde totalement différent de celui du référentiel géodésique. Pour ce dernier, une surface mathématique simple comme un ellipsoïde est utilisée pour déterminer la position d’un objet dans l’espace. La partie la plus complexe est de situer cet ellipsoïde dans l’espace. Pour le référentiel altimétrique, la surface de référence est issue du champ gravitationnel de la Terre. Cette surface s’appelle le géoïde et il représente la surface équipotentielle qui définit le mieux la forme de la Terre.

6.1 Surface de référence

Dans son ouvrage intitulé *Géodésie générale*, Levallois (1969, p. 20) a écrit :

Le phénomène physique fondamental qui régit la forme de la terre est la pesanteur. La pesanteur est, on le sait, la force attractive résultante qu’exercent sur chaque point matériel, d’une part l’ensemble des actions d’attraction newtoniennes des autres points du corps terrestre, d’autre part la force centrifuge due à la rotation terrestre autour de son axe.

Sous l’action de la pesanteur un fil à plomb au repos se met en équilibre suivant la verticale physique, c’est la définition même de la verticale en un point.

Compte tenu de ces forces, la pesanteur est en tout point verticale à la surface d’un liquide au repos (figure 31). Une telle surface est appelée « surface de niveau » ou, plus exactement, « surface équipotentielle ».

![Figure 31 : Pesanteur et surface de niveau](image-url)
Sur cette surface, le potentiel gravitationnel (W), ou géopotentiel, est constant et s’exprime en m²/s². Ainsi, la différence de potentiel entre deux surfaces le long de la verticale s’écrit (Meyer et coll., 2006) :

\[dW = -g \, dH \]

(9)

où H est la distance en mètres séparant les deux surfaces en un point donné et g est la pesanteur en m/s². La pesanteur correspond à la force de la gravité |\(\bar{g}\)|. Une différence de potentiel de 1 m²/s² représente approximativement une différence de 0,1 m entre deux surfaces, en utilisant une valeur moyenne de 9,8 m/s² pour la pesanteur.

Il existe une infinité de surfaces équipotentielles. Leurs principales caractéristiques sont qu’elles ne sont pas parallèles et ne s’entrecoupent pas. Ces surfaces sont constituées de bosses et de creux en fonction de la pesanteur qui varie en tout point. La pesanteur dépend, entre autres, de la latitude, de l’altitude et de la distribution des masses de densité variable sous le sol. La figure 32 montre la forme des surfaces équipotentielles aux environs d’une masse dense (D) et d’une masse légère (L). Avec son potentiel d’attraction supérieur, la masse dense rapproche les surfaces équipotentielles, comparativement à la masse légère. Selon l’équation (9), pour une même différence de potentiel (dW) aux points A et B, la pesanteur au point A est supérieure à celle au point B, car la distance séparant les surfaces W₀ et Wₙ y est plus courte.

Il existe une surface équipotentielle particulière. A priori, les océans semblent représenter une surface équipotentielle puisqu’ils forment une surface continue. C’est pour cette raison que les océans ont servi de surface de référence pour les altitudes au cours des siècles. La surface équipotentielle qui passe le plus près de la surface des océans au repos (en l’absence de marées et de courants, entre autres) s’appelle le géoïde (W₀). Cette surface est continue malgré la présence des continents. Ainsi, l’équation (9) peut s’écrire sous la forme suivante pour un point A situé au dessus du géoïde :

![Figure 32 : Surfaces équipotentielles](image)
$W_0 - W_A = \int_0^{H_0} g \, dH$

ou plus simplement par :

$$C_A = \int_0^{H_0} g \, dH$$

où C est la cote géopotentielle qui représente la différence de potentiel par rapport au géoïde à un point particulier. H est l’altitude orthométrique, soit la distance suivant la verticale entre les deux surfaces. Puisque g n’est pas constant le long de la verticale entre deux surfaces équipotentialles, une simplification de l’équation (11) peut être faite en utilisant la valeur moyenne de la pesanteur (\bar{g}) et obtenir :

$$C_A = \bar{g}H$$

Comme la pesanteur varie à tous les points, cette équation implique que, pour une cote géopotentielle constante, l’altitude orthométrique (H) varie continuellement.

Il existe une convergence des surfaces équipotentialles vers les pôles, causée par la différence de pesanteur qui existe entre l’équateur et les pôles. Pour une même cote géopotentielle à l’équateur et aux pôles, l’équation (12) donne une distance H plus grande à l’équateur qu’aux pôles, car la pesanteur est plus grande aux pôles ($9,83 \text{ m/s}^2$) qu’à l’équateur ($9,78 \text{ m/s}^2$). Bowie et Avers (1914) mentionnent qu’une distance de 1 000 m entre deux surfaces équipotentialles à l’équateur donnerait une distance d’environ 995 m aux pôles entre ces deux mêmes surfaces.

Cette convergence crée des problèmes d’interprétation. Par exemple, un grand plan d’eau au repos orienté sud-nord semble au niveau (figure 33). Ce plan d’eau a, par définition, la même cote géopotentielle sur toute sa surface. Comme l’eau ne s’écoule pas, la différence d’altitude orthométrique devrait être nulle entre ses deux extrémités. Or, si ce lac est suffisamment long pour avoir un \bar{g} plus petit au sud qu’au nord, alors $H_{\text{Sud}} > H_{\text{Nord}}$. À l’inverse, une même altitude orthométrique aux deux extrémités de ce lac ferait couler ce dernier vers le sud, car le nord du lac est sur une surface équipotentielle supérieure par rapport au sud ($C_{\text{Sud}} < C_{\text{Nord}}$). Heiskanen et Moritz (1967, p. 172) résument cette situation ainsi :

The orthometric height differs for points of the same level surface because the level surfaces are not parallel. This gives rise to the well-known paradoxes of “water flowing uphill,” etc.
Il existe une altitude qui est constante le long d’une surface équipotentielle. Dans l’équation (12), la pesanteur varie continuellement. Or, la cote géopotentielle est constante sur une même surface équipotentielle. En divisant la cote géopotentielle par une valeur constante de la pesanteur, il en résulte une altitude constante sur cette surface. Cette altitude est appelée « altitude dynamique » (H^D). L’équation suivante exprime cette relation :

$$C_A = \gamma_p H^D$$ \hspace{1cm} (13)

où γ_p est la pesanteur normale à une latitude déterminée. La pesanteur normale γ ou pesanteur théorique, est issue d’une surface équipotentielle mathématique (U). Cette surface est celle de l’ellipsoïde. Lors de la définition d’un ellipsoïde, plusieurs constantes associées à son potentiel normal sont définites. La pesanteur normale se calcule à partir d’une simple équation dont la seule variable est la latitude. Il résulte de cette équation une pesanteur constante le long d’un parallèle.

L’altitude dynamique est généralement utilisée pour la gestion de grands plans d’eau. Par exemple, pour la gestion des niveaux d’eau des Grands Lacs et de la voie maritime du Saint-Laurent, le Canada et les États-Unis ont implanté le Système de référence international des Grands Lacs (IGLD — International Great Lakes Datum) de 1985. Ce système calcule les altitudes dynamiques avec la pesanteur normale du 45° parallèle. Dans l’exemple de la figure 33, l’altitude dynamique est constante sur toute la surface du lac, alors que l’altitude orthométrique varie à chaque point.

6.2 Nivellement

Le nivellement géométrique est une méthode très précise pour déterminer l’altitude d’un point par rapport à un point de référence. La différence d’altitude qui est mesurée représente la dénivelée entre deux points. La convergence vers le nord et surtout le non-parallélisme des surfaces équipotentielles influencent les mesures de nivellement. La figure 34 résume ces effets en montrant deux parcours différents pour déterminer l’altitude d’un point. Les points A et D sont...
Les référentiels altimétriques

situés sur la même surface équipotentielle. Ils ont donc la même cote équipotentielle \((C_A = C_D)\), mais des altitudes orthométriques différentes \((H_A \neq H_D)\).

![Figure 34 : Nivellement et surfaces équipotentielles](image)

Quel que soit le lieu où il se trouve, le niveau est toujours perpendiculaire à la verticale de la surface équipotentielle qu’il rencontre. Ainsi, le parcours de nivellement entre les points A et B (figure 34) commence sur la surface équipotentielle située au-dessus du point A. La dénivelée mesurée entre les points A et 1 \((\delta n_1)\) est plus petite que la différence d’altitude orthométrique suivant la verticale au point B \((\delta H_1)\). Pour le parcours de A à B, la somme des dénivelées \((\Delta n_{AB})\) est plus petite que la somme des différences d’altitude orthométrique \((\Delta H_{AB})\). Pour le parcours entre les points D et B, c’est le phénomène inverse. La dénivelée mesurée entre les points D et 2 \((\delta n_2)\) est plus grande que la différence d’altitude orthométrique suivant la verticale au point B \((\delta H_2)\), donc \(\Delta n_{DB} > \Delta H_{DB}\). Il en résulte qu’un nivellement de A vers D en passant par B ne donnerait pas la bonne altitude orthométrique au point B. De plus, il y aurait une erreur de fermeture au point D. Pour rendre les dénivelées indépendantes du parcours suivi, il faut introduire des corrections orthométriques basées sur la pesanteur. Pour l’exemple de la figure 34, la différence d’altitude orthométrique pour le point B est :

\[
\Delta H_B = \Delta n_{AB} + \Delta v_{AB} = \Delta n_{DB} + \Delta v_{DB}
\]

(14)

où \(\Delta v\) est la correction à apporter à la dénivelée mesurée entre deux points. Cette correction peut prendre différentes formes, selon l’approche préconisée. Par exemple, Heiskanen et Moritz (1967) proposent la correction suivante :

\[
\Delta v_{AB} = \sum_A \frac{g_i - \gamma_0}{\gamma_0} \delta n_i + \frac{\overline{g}_A - \gamma_0}{\gamma_0} H_A - \frac{\overline{g}_B - \gamma_0}{\gamma_0} H_B
\]

(15)
où g_i est la pesanteur mesurée avec la dénivelée δh_i, \bar{g}_A et \bar{g}_B sont les pesanteurs moyennes aux points A et B et γ_0 une constante arbitraire. Le problème avec cette correction est qu’il faut faire l’approximation de plusieurs de ses variables. Par exemple, la pesanteur moyenne représente la moyenne entre la pesanteur au point A et la pesanteur sur le géoïde suivant la verticale passant par le point A. Or, il est impossible de mesurer la pesanteur sur le géoïde puisqu’elle se mesure sur le terrain. Par contre, il existe des équations qui peuvent estimer la valeur moyenne à partir d’une valeur mesurée.

A priori, le nivellement géométrique est une technique qui semble relativement simple. À la lumière de la présente section, l’obtention de dénivelées orthométriques est beaucoup plus complexe. Dans ce guide, l’expression « nivellement géodésique » est utilisée pour désigner la méthode rigoureuse qui inclut la pesanteur (mesurée ou normale) dans le nivellement géométrique. C’est le terme qui est en usage depuis très longtemps pour distinguer cette méthode du nivellement géométrique simple.

6.3 Système de référence altimétrique

Le système de référence altimétrique est parfois appelé « _datum_ altimétrique », « _datum_ vertical » ou « niveau moyen de la mer ». La mise en place d’un tel système repose généralement sur les deux étapes suivantes : la définition (le système) et la réalisation (la structure).

La définition consiste à choisir la surface de référence à qui sera attribuée l’altitude zéro ainsi que les paramètres et les conventions qui devront être mis en place pour déterminer l’altitude d’un point quelconque. La réalisation consiste à concrétiser le référéntiel sur le territoire par la matérialisation des repères qui formeront le réseau altimétrique, la prise de mesure et la détermination des altitudes de ces repères.

Deux systèmes seront présentés dans cette section. Le premier sera le niveau moyen de la mer. L’utilisation de cette surface de référence est une pratique plus que millénaire. Le deuxième système sera celui en vigueur au Canada, soit le CGVD28.
6.3.1 Niveau moyen de la mer

Longtemps considérée comme une grande surface dont la seule variation est due à la marée, la mer a servi de surface de référence pour le calcul des altitudes. Pour concrétiser cette surface, il suffit d’installer un marégraphe dans un lieu, de le rattacher à un repère altimétrique par nivellement et de prendre des mesures sur le mouvement de la mer sur plusieurs années pour déterminer la valeur zéro qui correspondra au niveau moyen de la mer (NMM). Les mesures sur la marée doivent être d’une durée suffisante pour absorber tous les cycles inhérents aux marées. Le plus long de ces cycles dure environ 19 ans.

Une fois la surface de référence connue, le repère altimétrique a une altitude orthométrique connue. De là, un nivellement de précision est effectué sur l’ensemble des repères altimétriques qui formeront le réseau altimétrique. Pour s’assurer que la surface de référence demeure le géoïde, des corrections orthométriques sont apportées aux dénivelées. Sur de grands territoires, il pouvait y avoir plusieurs marégraphes. Un nivellement de précision était parfois effectué entre ces marégraphes.

À une certaine époque, il était d’usage d’admettre que le NMM coïncidait en pratique avec le géoïde. Aujourd’hui, avec de meilleures connaissances sur la physique de la terre et de ses grands plans d’eau, il est maintenant reconnu que le NMM ne coïncide pas avec le géoïde. L’ensemble des océans ne forme pas une surface uniforme. Des éléments tels que les courants et les différences de température, de salinité et de densité créent un relief sur cette surface par rapport au géoïde. Cette topographie de la surface de la mer (TSM ou SST — Sea Surface Topography) a des bosses et des creux comme le relief terrestre, mais de plus faibles amplitudes. Grâce à l’altimétrie satellitaire (figure 35) (NASA, 2007), il est possible de mesurer l’altitude orthométrique de la surface de la mer (H_{SST}) et ainsi représenter le relief de la mer. L’altitude se calcule par :

\[H_{SST} = h_{Sat} - D - N \]

où \(h_{Sat} \) est l’altitude géodésique du satellite altimètre, \(D \) est la distance mesurée par le satellite altimètre à la surface de l’eau et \(N \) est l’altitude géodésique du géoïde.

LeGrant et coll. (2003) estiment que ce relief varie approximativement de \(-1,8 \) m à \(+1,2 \) m par rapport au géoïde. La figure 36 présente la TSM moyenne de 1992 à 2003 (Steward, 2007).

Figure 35 : Altimétrie satellitaire
La figure 37 résume ce qui est mesuré à un marégraphe. La surface équipotentielle \(W_{NMM} \) représente le niveau moyen de la mer défini par les mesures prises sur une longue période de temps. C’est l’altitude zéro. La différence d’altitude \((H_{TSM}) \) entre le géoïde \((W_0) \) et \(W_{NMM} \) est causée par la topographie de la surface de la mer. \(H_M \) est l’altitude au marégraphe et elle est déterminée une fois le NMM établi. L’altitude du repère \((H_R) \) est calculée à la suite d’un nivellement \((\Delta H_{R-M}) \).

D’autres phénomènes peuvent influencer l’emplacement du NMM. Par exemple, si le marégraphe est situé dans un secteur où il y a un soulèvement ou un affaissement du sol causé par, entre autres, le rebond postglaciaire, il observera un abaissement ou un rehaussement.
Les référentiels altimétriques

relatif du niveau de la mer. Le rehaussement du niveau de la mer causé par la fonte des glaces peut aussi biaiser les mesures et fausser les résultats. Entre deux périodes de 19 années suffisamment espacées dans le temps, le NMM, soit l’altitude 0, ne sera pas à la même place. Il est alors impossible de fixer adéquatement le niveau moyen de la mer pour une très longue période. Ainsi, comme l’écrivait Levallois (1969, p. 378) : « La définition du zéro finit par prendre un caractère purement conventionnel correspondant à une époque donnée » à un lieu donné. Le marégraphe ne peut à lui seul discriminer le mouvement du sol par rapport à un mouvement de la mer. Des méthodes pour y parvenir seront présentées dans ce chapitre et le suivant.

Étant donné que la TSM est variable, des marégraphes implantés le long d’un très long littoral auront tous un \(W_{NMM} \) et un \(H_{TSM} \) différents. Un nivellement géodésique entre ces marégraphes pourrait mesurer une différence d’altitude entre eux. En réalité, c’est la différence d’altitude entre les \(H_{TSM} \) de chaque site qui est mesurée. Dans une telle situation, l’établissement d’une surface de référence dépendra de la solution retenue.

Une solution consisterait à compenser les dénivelées en ne tenant compte d’un seul marégraphe comme point de référence (\(M_1 \) sur la figure 38). La surface serait une surface équipotentielle si les corrections orthométriques sont bien appliquées. Les autres marégraphes auront alors une différence d’altitude par rapport au niveau moyen de la mer qu’ils ont observé. Cette approche était peu logique à une certaine époque : le niveau moyen de la mer coïncidait avec le géoïde.

Une autre solution serait de minimiser ces différences d’altitude aux marégraphes en ajoutant une constante géométrique à l’altitude du marégraphe de référence (\(M_1 \) sur la figure 39). En déplaçant ainsi toute la surface \(W_{NMM} \) établie au marégraphe de référence, l’écart entre cette nouvelle surface et les autres \(W_{NMM} \) serait minime. Par contre, cette nouvelle surface ne serait plus une surface équipotentielle. Il faut rappeler que les surfaces équipotentielles ne sont pas parallèles.
Une autre solution serait de contraindre les dénivelées à chaque surface W_{NMM} mesurée (figure 40). La nouvelle surface définie par le nivellement n’est plus une surface équipotentielle. De plus, elle oscille de part et d’autre du géoïde. Aujourd’hui, cette approche est à proscrire, mais elle était la plus logique à l’époque où le niveau moyen de la mer coïncidait avec le géoïde.

![Figure 40](image_url)

Figure 40 : Niveau moyen de la mer et trois marégraphes

En résumé, le niveau moyen de la mer peut être considéré comme une surface de référence, mais à un lieu et pour une époque seulement.

6.3.2 CGVD28

Le système de référence altimétrique en vigueur au Canada est le CGVD28 (Canadian geodetic vertical datum of 1928). Par définition, le niveau moyen de la mer est la surface de référence et les altitudes sont orthométriques. La réalisation du CGVD28 est basée sur la compensation faite en 1928 par les Levés géodésiques du Canada avec 37 000 km de nivellement effectué de 1906 à 1928 (Cannon, 1929; GSC, 1935). La compensation a été contrainte sur six points, soit sur le niveau moyen de la mer observé à cinq marégraphes (trois pour l’Atlantique et deux pour le Pacifique) et sur un repère de nivellement situé à Rouses Point (New York, États-Unis). Ces marégraphes étaient situés à Halifax et Yarmouth en Nouvelle-Écosse, à Pointe-au-Père au Québec et à Vancouver et Prince Rupert en Colombie-Britannique. L’altitude du repère situé à Rouses Point provient de travaux Canada–États-Unis, dont la valeur finale a été retenue lors d’une conférence tenue en mars 1925 (Cannon, 1935). La figure 41 (Cannon, 1929) montre en rouge le territoire canadien couvert par la compensation de 1928.
Des corrections ont été apportées aux dénivelées (Cannon, 1929). Le calcul de ces corrections provient des travaux de Bowie et Avers (1914). Ces derniers ont basé leurs travaux sur la pesanteur normale \(\gamma \) en utilisant l'équation suivante :

\[
\gamma = \gamma_{45} (1 - \alpha \cos 2\phi + \beta \cos^2 2\phi - kH)
\]

où \(\alpha \) et \(\beta \) sont des constantes, \(H \) l'altitude, \(\phi \) la latitude, \(k \) une variable fonction de \(H \) et \(\phi \), et \(\gamma_{45} \) la pesanteur normale au niveau moyen de la mer à la latitude de 45° (9,80624 m/s\(^2\)).

En utilisant l'équation (16) dans l'équation (11) et en intégrant cette dernière, il en résulte la correction « orthométrique » suivante :

\[
dH = -2\alpha \sin 2\phi \left[1 + \left(\frac{\alpha - 2\beta}{\alpha} \right) \cos 2\phi \right] Hd\phi
\]

où \(\alpha = 0,002644 \) et \(\beta = 0,000007 \). \(H \) représente l'altitude moyenne, \(\phi \) la latitude moyenne et \(d\phi \) la différence de latitude entre le point de départ et le point d'arrivée de la dénivelée.

En théorie, l'équation (11) s'intègre selon la pesanteur réelle \((g) \). En l'intégrant avec la pesanteur normale \((\gamma) \), il en résulte des corrections « normales ». Avec l'équation (17), aucune correction n'est apportée si le nivellement est effectué le long d'un parallèle \((d\phi = 0) \). C'est le propre de la pesanteur normale. Dans la définition du CGVD28, la surface de référence est le
Les référentiels altimétriques

géoïde et les altitudes sont orthométriques. En appliquant des corrections « normales » aux altitudes, elles ne sont plus des altitudes orthométriques pures. Ainsi corrigées, elles sont appelées altitudes orthométriques normales.

La compensation de 1928 établissait la surface de référence altimétrique canadienne. Tous les nivellements effectués par la suite pour densifier le réseau se sont appuyés sur les altitudes issues de cette compensation en dépit des événements suivants.

En 1929, les États-Unis ont procédé à la compensation de plus de 106 000 km de nivellement (y compris les données canadiennes). Elle fut contrainte sur le niveau moyen de la mer observé par 26 marégraphes, dont les 5 ayant servi à l’établissement du CGVD28. Le Sea Level Datum of 1929 (SLD29) devint la surface de référence altimétrique des États-Unis. Pour les points canadiens, les altitudes de cette compensation ne correspondent pas à celles obtenues dans la compensation canadienne de 1928. Le Canada a conservé sa solution de 1928.

Cannon (1935) a noté que des travaux réalisés en 1929 et 1930 par les États-Unis avaient modifié l’altitude du repère à Rouses Point. Cannon a compensé de nouveau les données de 1928 en tenant libre le repère de Rouses Point. L’altitude du repère fut de 3 cm plus bas que la valeur de 1925. Étant donné que la solution de 1928 était de plus en plus utilisée, il fut convenu de ne pas diffuser les résultats de cette nouvelle compensation.

En 1935, les résultats de la compensation de 1928 devenaient officiellement le système de référence altimétrique pour le Canada à la suite de l’approbation du décret 630 le 11 mars 1935 (annexe C). Par ce décret, le système de référence altimétrique prenait officiellement le nom de Canadian Geodetic Datum (CGD).

Deuxièmement, à cause du nom donné dans le décret, des usagers associèrent durant plusieurs décennies les altitudes de ce système à des altitudes géodésiques. Or, l’altitude géodésique est la coordonnée curviligne représentant la distance entre un point dans l’espace et la surface d’un ellipsoïde (section 3) et non par rapport au géoïde. Le mot géodésique dans le nom indique que des méthodes géodésiques ont été utilisées pour corriger les mesures de nivellement (nivellement géodésique). Une attention particulière doit être portée lorsqu’il est fait
mention d’altitudes géodésiques dans un document. Dans la grande majorité des cas, ce document fait référence à des altitudes orthométriques.

6.3.2.1 Principales erreurs dans le CGVD28

Lors de la création du CGVD28, des phénomènes non connus ou des approximations dans les calculs ont introduit des erreurs et des biais. Les deux principales sources qui ont produit ces erreurs et biais sont décrites dans les paragraphes suivants. Leurs conséquences sont illustrées dans la figure 42 adaptée de la DLG (2009a).

À l’époque de la conception du référentiel, il était admis que le niveau moyen de la mer devait en pratique coïncider avec le géoïde. Les océans Atlantique et Pacifique reposaient donc sur la même surface équipoïtentielle. Aujourd’hui, grâce à la TSM, ce postulat n’est plus vrai (section 6.3.1). Des analyses récentes montrent que le niveau de l’océan Pacifique est d’environ...
50 cm plus haut que celui de l'océan Atlantique. La création du CGVD28 ressemble à la solution présentée dans la figure 40. En contraignant la surface à passer par cinq surfaces équipotentielles différentes, le CGVD28 n’a pu rencontrer un des paramètres de sa définition, soit d’être une surface équipotentielle. La figure 42 présente de façon simplifiée la distorsion subie par le CGVD28. Les cinq points de contrainte ont créé une pente descendante d’ouest en est dans la surface.

À des fins de validations, Cannon (1935) a compensé les données de 1928 en ne contraignant les calculs que sur le marégraphe d’Halifax. Il constata que les altitudes obtenues pour les marégraphes de Vancouver et de Prince Rupert étaient plus élevées de 0,26 m et 0,51 m, respectivement. Sans connaître l’existence de la TSM, il attribua cette différence à la prédominance des vents qui font gonfler l’océan le long de la côte.

Lors d’un nivellement, les dénivelées mesurées sur le terrain doivent être corrigées pour obtenir des différences d’altitudes orthométriques. Selon l’équation (15), il faut prendre régulièrement des mesures de pesanteur. Or, la correction « orthométrique », telle qu’elle a été formulée dans l’équation (17), est basée sur une pesanteur normale (théorique) et varie principalement en fonction de la différence de latitudes. Ceci introduit un biais dans la correction. L’utilisation de pesanteur mesurée modifiait de plusieurs décimètres les altitudes des Rocheuses.

6.3.2.2 Limites du CGVD28

La principale limite de CGVD28 est son accès sur le territoire. L’utilisation du nivellement géodésique pour déterminer le géoïde en limite l’accès qu’aux endroits parcourus par ce nivellement. Dans ce cas, ce ne sont que des portions étroites du référentiel qui sont accessibles. En résumé, s’il n’y a pas de nivellement géodésique, il n’y a pas de CGVD28.

Dès 1928, des travaux de densification et de validation du réseau de nivellement canadien ont été entrepris. La structure initiale a servi d’appui à ces travaux. Par exemple, un nivellement effectué en 1968 s’appuie sur les altitudes établies en 1928. Si ce nivellement est dans un secteur fortement influencé par le rebond postglaciaire, alors, aujourd’hui, en termes absolus, les altitudes sont biaisées. Par exemple, si la vitesse du rebond est de 4 mm/a, alors les points d’appui de 1928 sont 0,16 m trop bas en 1968. En 2008, les altitudes de ce secteur seraient biaisées de 0,32 m. Par contre, en termes relatifs, il n’y aurait aucune différence puisque tout le secteur se soulève à la même vitesse.

En 1928, des régions habitées du Canada n’étaient pas connectées au CGVD28 (figure 41) à cause de leur isolement. Par exemple, l’Île-du-Prince-Édouard, l’île de Vancouver et, ultérieurement, Terre-Neuve n’ont pas de réseaux issus de cette compensation. L’accès au CGVD28 s’est fait par la mise en place de marégraphes (Jones, 1973). Cette façon de procéder
est conforme à la définition du CGVD28 puisqu'elle définit le niveau moyen de la mer à chaque endroit. Sachant que le niveau moyen de la mer varie d'une place à l'autre et aussi d'une époque à l'autre, il est fort possible qu'il existe une légère différence entre la surface obtenue par chacun de ces marégraphes et la surface du CGVD28 qui est basée sur cinq autres marégraphes. Aujourd'hui, compte tenu de l'état des connaissances, chacun des lieux cités en exemple serait considéré comme des systèmes de référence altimétriques locaux.

Refaire le référentiel en 2008 avec la même approche qu'utilisée en 1928 situerait la surface de référence à un niveau différent. Par exemple, la région d'Halifax fait face à deux phénomènes : un affaissement causé par le rebond postglaciaire et un rehaussement du niveau de la mer. La figure 43 (Forbes, 2008) montre le rehaussement relatif de l'eau mesuré à Halifax, et il est estimé à 3,2 mm/a. Avec un affaissement estimé à 1,7 mm/a (Forbes, 2008), le rehaussement réel de l'eau est de 1,5 mm/a. Ainsi, en 2008, le niveau moyen de la mer, soit l'altitude zéro, serait établi environ 0,26 m plus haut que l'altitude zéro de 1928 en faisant abstraction des deux phénomènes. En réalité, le niveau d'eau n'a monté que de 0,12 m depuis 1928. Le CGVD28 est un système statique qui ne tient pas compte de la dynamique de la Terre.

![Graphique de l'affaissement et du rehaussement de l'eau à Halifax](image)

Figure 43 : Rehaussement relatif de l'eau à Halifax

6.3.3 Infrastructure altimétrique

Aujourd'hui, le CGVD28 est accessible sur le territoire canadien par l’entremise de plus de 80 000 repères de nivellement de premier ordre répartis sur environ 150 000 km de lignes de nivellement. La majorité d’entre eux sont situés dans le sud du Canada. La figure 44 (Véronneau et coll., 2006) montre l’état actuel du territoire canadien ayant un accès au CGVD28 par l’entremise du réseau de premier ordre. Au Québec, ce réseau a été densifié par des organismes gouvernementaux (ministères ou sociétés d’État) ou municipaux. Le tableau 28 présente la hiérarchie de l’infrastructure altimétrique telle qu’elle a été établie au Québec.
Les référentiels altimétriques

Figure 44 : Le réseau primaire canadien

Tableau 28 : Infrastructure altimétrique au Québec

<table>
<thead>
<tr>
<th>Réseau</th>
<th>Ordre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milieu</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Distance minimale entre les lignes de nivellement (km)</td>
<td>10-20</td>
</tr>
<tr>
<td>Réseau</td>
<td>Milieu</td>
</tr>
<tr>
<td>1 : primaire</td>
<td>A : urbain</td>
</tr>
<tr>
<td>2 : secondaire</td>
<td>B : semi-urbain</td>
</tr>
<tr>
<td>3 : tertiaire</td>
<td>C : non développé</td>
</tr>
<tr>
<td>4 : complémentaire</td>
<td></td>
</tr>
</tbody>
</table>

Un critère de qualité métrique est associé à l’altitude de chaque repère altimétrique. La DRG utilise quatre catégories, ou classes, pour décrire la qualité métrique de l’altitude. Celles qui ne respectent pas les critères métriques sont hors classe (classe D) et ne sont pas disponibles pour les utilisateurs. Le classement se fait à partir de l’erreur standard (σ) de l’altitude issue de la compensation des données. Le tableau 29 présente, pour une classe et un ordre donnés, la limite maximale permise.

Tableau 29 : Critères de classement (m) de l’infrastructure altimétrique

<table>
<thead>
<tr>
<th>Classe</th>
<th>Ordre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1A</td>
</tr>
<tr>
<td>1</td>
<td>0,014</td>
</tr>
<tr>
<td>2</td>
<td>0,020</td>
</tr>
<tr>
<td>3</td>
<td>0,028</td>
</tr>
</tbody>
</table>
6.4 Modèle de géoïde

On mentionne un peu plus haut que le géoïde \((W_0)\) est la surface équipotentielle qui, du point de vue des moindres carrés, représente les mers au repos. Cette surface est directement liée au champ gravitationnel. Puisqu’il est intangible, le géoïde ne peut se mesurer directement. Par contre, il est possible de le modéliser à partir de mesures de la pesanteur. Ces mesures peuvent provenir de diverses sources : terrestre, aéroportée ou satellitaire. La présence récente des mesures satellitaires dans la modélisation du géoïde a monté d’un cran la précision des modèles.

La représentation spatiale du géoïde, ou sa modélisation, se fait avec un système de référence terrestre. Le résultat de cette représentation prend la forme d’un quadrillage plus ou moins dense où l’altitude géodésique du géoïde est déterminée à chaque nœud. Ces nœuds sont aussi connus en position (latitude et longitude). La densité du quadrillage et son étendue géographique sont établies en fonction de son utilisation. L’ensemble des données forme un modèle.

Puisque le géoïde est une surface particulière, son altitude géodésique s’appelle ondulation du géoïde \((N)\). Ce nom s’explique par le fait que la surface oscille de part et d’autre de l’ellipsoïde (figure 45). La relation entre l’altitude géodésique \((h)\), l’altitude orthométrique \((H)\) et l’ondulation du géoïde \((N)\) s’exprime par :

\[
h = H + N
\]

L’ondulation du géoïde fait le lien entre le monde mathématique (altitude géodésique) et le monde gravimétrique (altitude orthométrique).

La valeur de \(N\) pour un même point du géoïde peut varier selon la forme, l’orientation ou l’emplacement de l’ellipsoïde. La figure 46 présente la situation avec deux ellipsoïdes. La position des ellipsoïdes est exagérée pour bien illustrer le phénomène. Quel que soit l’emplacement de l’ellipsoïde, le géoïde est toujours à la même place, car c’est une surface réelle, alors que l’ellipsoïde est une surface théorique arbitraire. Ainsi, un point au sol a la même altitude orthométrique malgré des valeurs différentes de \(N\) et \(h\) puisque \(h_A - N_A = h_B - N_B\).
Il existe plusieurs modèles de géoïde. Certains sont mondiaux et d'autres, régionaux. Le modèle mondial le plus connu est l'EGM96 (Earth Gravitational Model of 1996) (figure 47) (NASA, 2009). Ses principales caractéristiques sont présentées dans le tableau 30. Son quadrillage de $15' \times 15'$ représente une surface de 27,8 km (nord) sur 19,5 km (est) dans la région de la ville de Québec.

Les modèles régionaux sont calculés sur une portion plus ou moins grande de la Terre. En ayant des portions retraitées à modéliser, le quadrillage est généralement plus dense et il y a plus de mesures de la pesanteur qui participent aux calculs. D'autres sources de données peuvent aussi améliorer la qualité du modèle. Pour des besoins particuliers, le modèle peut utiliser une surface équipotentielle (W) différente du géoïde (W_0). Par exemple, dans l'établissement d'un système de référence altimétrique, le choix de la surface équipotentielle qui
Les référentiels altimétriques

servira de référence « zéro » est primordial. Cette surface peut être une surface équipotentielle autre que le géoïde.

Pour le territoire canadien, la DLG a développé au cours des deux dernières décennies quelques modèles. Les plus récents sont le CGG2000 et le CGG2005 (figure 48) (Véronneau, 2006) où CGG est l’acronyme de Canadian Gravimetric Geoid. Le tableau 30 présente les principales caractéristiques de ces deux modèles. Leur quadrillage de 2’ × 2’ représente une surface de 3,7 km (nord) sur 2,6 km (est) dans la région de la ville de Québec.

Tableau 30 : EGM96, CGG2000 et CGG2005

<table>
<thead>
<tr>
<th>Structure de référence</th>
<th>EGM96</th>
<th>CGG2000</th>
<th>CGG2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellipsoïde</td>
<td>WGS84 (G873)</td>
<td>ITRF97</td>
<td>ITRF2000</td>
</tr>
<tr>
<td>Ellipsoïde</td>
<td>WGS84</td>
<td>GRS80</td>
<td>GRS80</td>
</tr>
<tr>
<td>(W_0)</td>
<td>62 636 856,88 m²/s²</td>
<td>62 636 855,8 m²/s²</td>
<td>62 636 856,88 m²/s²</td>
</tr>
<tr>
<td>Quadrillage</td>
<td>15’ × 15’</td>
<td>2’ × 2’</td>
<td>2’ × 2’</td>
</tr>
</tbody>
</table>

Figure 48 : Géoïde canadien CGG2005

Bien que les modèles canadiens utilisent des structures de référence pratiquement identiques, la valeur de \(N\) pour un même point est différente d’environ 0,1 m. Ces modèles n’utilisent pas la même surface équipotentielle pour représenter le géoïde (\(W_0\)). Par contre, la différence d’ondulations (\(\Delta N\)) entre deux points est relativement la même pour les deux modèles. Cette légère différence provient, entre autres, de l’amélioration de la qualité et de la quantité des
Les référentiels altimétriques

Étant directement liée à la Terre, la forme du géoïde se modifie constamment, mais très faiblement au gré du mouvement des masses. Par exemple, le rebond postglaciaire soulève très lentement la surface W_0. Ainsi, deux modèles de géoïde créés à des époques différentes pourraient avoir des valeurs légèrement différentes. Selon la DLG (DLG, 2009b), le géoïde se souleverait d’environ 1,5 mm/a au plus fort du rebond postglaciaire.

6.4.1 Géoïde hybride

L’arrivée du positionnement spatial, tel que le GPS dans les années 1980, a mis en évidence les faiblesses mais surtout l’incompatibilité entre la structure CGVD28 et les référentiels géodésiques modernes. La structure de référence terrestre NAD83 (SCRS) utilisée au Canada permet d’obtenir des altitudes géodésiques avec un très bon degré d’exactitude. Pour convertir ces altitudes géodésiques en altitudes orthométriques CGVD28, l’utilisation de l’équation (18) avec un modèle de géoïde comme le CGG2000 semble a priori une solution simple. Dans les faits, les structures NAD83 (SCRS) et CGVD28 ainsi que le modèle de géoïde CGG2000 sont incompatibles entre eux.

Pour bien comprendre ces incompatibilités telles qu’elles sont illustrées à la figure 49, il faut revenir sur certaines notions présentées auparavant. Premièrement, la structure CGVD28, telle qu’elle a été conçue, n’est pas une surface équipotentielle (figure 42). Quelle que soit la valeur attribuée à W_0 pour définir le géoïde, cette structure altimétrique ne peut être représentée par un modèle de géoïde.

Deuxièmement, les valeurs d’ondulation du modèle CGG2000 sont calculées dans la structure de référence ITRF97, alors que les altitudes géodésiques sont calculées dans la structure NAD83 (SCRS). Par contre, il est possible de transformer les valeurs d’ondulation du modèle CGG2000 dans la structure NAD83 (SCRS) puisque les paramètres de la transformation sont connus entre ITRF97 et NAD83 (SCRS) (section 5.2.1.3). Cependant, cette transformation ne modifie pas l’emplacement et la forme du géoïde.

Figure 49 : NAD83 (SCRS), CGVD28 et CGG2000
À la suite de ces constatations, il est évident que l'utilisation de l’équation (18) ne peut s’appliquer directement étant donné que H_{CGVD28} n’égale pas $H_{CGG2000}$. Conclusion : l’ondulation du géoïde du CGG2000 ne répond pas au besoin de transformer directement les altitudes géodésiques issues du NAD83 (SCRS) en altitudes orthométriques CGVD28. Cette conclusion s’applique à tous les modèles de géoïde gravimétrique.

Pour résoudre ce problème, la DLG a « modélisé » la surface du CGVD28. Pour y parvenir, elle a déterminé par GPS l’altitude géodésique de 2 834 repères répartis d’une extrémité à l’autre du Canada dans la version 3.1 du NAD83 (SCRS). L’ensemble de ces repères forme le Supernet (v3.1) et les deux tiers d’entre eux possèdent une altitude orthométrique. La figure 50 (Véronneau et coll., 2001) montre en rouge les 1 926 repères, ou points de contrôle, retenus pour le calcul du modèle.

L’écart orthométrique (ε_H) a été déterminé pour chacun des repères retenus avec l’équation suivante :

$$
\varepsilon_H = (h_{NAD83 \ (SCRS)} - N_{CGG2000 \ (NAD83)}) - H_{CGVD28}
$$

(19)

où :

- $h_{NAD83 \ (SCRS)} :$ altitude géodésique en NAD83 (SCRS)
- $N_{CGG2000 \ (NAD83)} :$ ondulation du géoïde du CGG2000 transformée en NAD83 (SCRS)
- $H_{CGVD28} :$ altitude orthométrique en CGVD28

À partir de ces 1 926 écarts, un modèle de correction a été créé sous la forme d’un quadrillage où chaque nœud représente une valeur correctrice. En combinant ce modèle de correction au
modèle de géoïde CGG2000 préalablement transformé dans la structure NAD83 (SCRS), la DLG a produit un modèle de géoïde dit « hybride » avec un quadrillage de 2' × 2'. Ce géoïde hybride appelé HT2.0 (Height Transformation, version 2.0) permet d’obtenir directement une altitude orthométrique CGVD28 à partir d’une altitude géodésique NAD83 (SCRS). Le développement de modèle de géoïde hybride est une tendance internationale. Plusieurs pays ont recours à ce type de modèle pour l’obtention d’altitudes orthométriques compatibles avec leur système de référence altimétrique à partir d’altitudes géodésiques.

Le géoïde hybride HT2.0 est particulièrement efficace dans les endroits où se trouve un des 1 926 repères ayant servi à sa création. En l’appliquant sur ces repères, 95 % d’entre eux présentent une erreur résiduelle de moins de 5 cm. Ces points sont principalement situés dans le Canada méridional. Pour les 5 % qui restent, l’erreur résiduelle peut atteindre quelques décimètres (Véronneau et coll., 2001). En dehors des territoires couverts par les repères du Supernet, HT2.0 doit être utilisé avec une bonne connaissance de la région. Cette mise en garde s’applique aussi aux régions qui n’ont pas de repères altimétriques rattachés à l’infrastructure CGVD28. Les altitudes orthométriques de ces régions sont généralement issues de systèmes altimétriques locaux plus ou moins compatibles avec le CGVD28. Un cas sera présenté dans la section suivante.

6.5 Calcul d’altitudes CGVD28

Le but de cette section est de présenter avec quelques exemples numériques l’utilisation d’un modèle de géoïde pour obtenir des altitudes CGVD28 à partir d’altitudes géodésiques. Ces exemples serviront aussi à comprendre des concepts vus précédemment dans ce chapitre. Les données analysées proviennent du logiciel GPS-H. Une brève description de ce logiciel est nécessaire pour bien comprendre les exemples qui suivront.

La DLG a développé le logiciel GPS-H (figure 51) pour extraire d’un modèle de géoïde l’ondulation (N) et les composantes (ξ, η) de la déviation de la verticale à un point donné et calculer l’altitude orthométrique si l’altitude géodésique est connue. Il permet aussi de transformer ces valeurs en NAD83 (SCRS) si la structure d’origine du modèle de géoïde est l’ITRF. GPS-H utilise les termes « hauteur ellipsoïdale » et « hauteur orthométrique » pour désigner respectivement l’altitude géodésique et l’altitude orthométrique.

GPS-H offre la possibilité de transformer des altitudes géodésiques en altitudes orthométriques selon trois approches. La première approche est la transformation directe basée sur l’équation (18), soit \(H = h - N \). À partir de la position (latitude et longitude) d’un point, GPS-H extrait l’ondulation du géoïde (N) du modèle et la soustrait de l’altitude géodésique (h).

La deuxième approche consiste à ajouter un biais à l’ondulation du géoïde. Ce biais \((h - N - H) \) est calculé avec un point dit de contrôle pour lequel les altitudes \(H \) et \(h \) sont connues et \(N \) est
Les référentiels altimétriques

extrait du modèle de géoïde. S’il y a plusieurs points de contrôle, alors c’est un biais moyen qui est utilisé. Si les altitudes orthométriques des points de contrôle sont en CGVD28, alors les altitudes géodésiques des autres points seront transformées en altitudes orthométriques compatibles avec le CGVD28 par la simple relation suivante : \(H = h - (N + \text{biais}) \). Sinon, elles seront compatibles avec le système altimétrique particulier des points de contrôle.

Figure 51 : Logiciel GPS-H

La troisième approche consiste à ajouter une correction à l’ondulation du géoïde. À partir d’un minimum de cinq points de contrôle, un plan correctif est calculé et une correction différente est appliquée à chaque point par l’équation suivante : \(H = h - (N + \text{correction}) \). La figure 42 montre une pente d’ouest en est dans la surface du CGVD28. Il peut y avoir une petite pente locale dans une portion de cette surface. L’utilisation de cette approche permet de modéliser la pente locale pourvu que les points de contrôle soient uniformément répartis sur le territoire de travail. Selon le fichier d’aide de l’application, il est proposé d’utiliser cette approche pour de grands territoires (50 à 100 km).

6.5.1 Analyses métriques

La première analyse métrique présente les effets causés par des ondulations du géoïde calculées dans deux structures de référence géodésiques différentes et l’application du géoïde hybride HT2.0. Le tableau 31 présente les altitudes géodésiques (\(h \)) et orthométriques (\(H \)) de quatre repères, nommés par leur matricule, situés dans la région de Rivière-du-Loup. Les altitudes géodésiques sont dans la version 2 de la structure NAD83 (SCRS) et les altitudes orthométriques sont dans la structure CGVD28. La colonne « \(N_{83-28} \) » représente l’écart (\(h - H \)) entre ces deux structures. Dans un monde parfait, cet écart représenterait l’ondulation du géoïde.
Tableau 31 : Altitudes (h, H) et différence d’altitudes pour quatre repères

<table>
<thead>
<tr>
<th>Matricule</th>
<th>h</th>
<th>H</th>
<th>N83-28</th>
</tr>
</thead>
<tbody>
<tr>
<td>79L073</td>
<td>249,783 m</td>
<td>275,754 m</td>
<td>-25,971 m</td>
</tr>
<tr>
<td>79L089</td>
<td>-22,164 m</td>
<td>4,616 m</td>
<td>-26,780 m</td>
</tr>
<tr>
<td>83L118</td>
<td>14,776 m</td>
<td>41,401 m</td>
<td>-26,625 m</td>
</tr>
<tr>
<td>99K0072</td>
<td>-22,268 m</td>
<td>4,424 m</td>
<td>-26,692 m</td>
</tr>
</tbody>
</table>

Dans le tableau 32, la colonne « ITRF » présente les ondulations du géoïde extraites directement des modèles CGG2000 et CGG2005, c’est-à-dire dans leur structure originale. La colonne « NAD83 (SCRS) » présente les ondulations du géoïde extraites des modèles CGG2000 et CGG2005, mais transformées dans cette structure. La différence d’environ 1 m entre les deux structures pour un même modèle de géoïde provient du fait que le système NAD83 n’est pas géocentrique comparativement au système ITRS. La différence d’environ 0,1 m entre les deux modèles de géoïde s’explique par le fait qu’ils n’utilisent pas la même surface équipotentielle pour représenter le géoïde (W₀) (tableau 30).

Tableau 32 : CGG2000 et CGG2005 : ITRF et NAD83 (SCRS)

<table>
<thead>
<tr>
<th>Matricule</th>
<th>ITRF</th>
<th>NAD83 (SCRS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CGG2000</td>
<td>CGG2005</td>
</tr>
<tr>
<td>79L073</td>
<td>-26,602 m</td>
<td>-26,746 m</td>
</tr>
<tr>
<td>79L089</td>
<td>-27,414 m</td>
<td>-27,543 m</td>
</tr>
<tr>
<td>83L118</td>
<td>-27,298 m</td>
<td>-27,412 m</td>
</tr>
<tr>
<td>99K0072</td>
<td>-27,346 m</td>
<td>-27,463 m</td>
</tr>
</tbody>
</table>

Le tableau 33 montre la différence entre les valeurs du tableau 32 et les valeurs N83-28 du tableau 31 pour chaque point. Ces valeurs représentent l’écart qu’obtiendrait un utilisateur s’il transformait directement ses altitudes géodésiques NAD83 (SCRS) en altitudes orthométriques GCVD28 avec un modèle de géoïde gravimétrique.

<table>
<thead>
<tr>
<th>Matricule</th>
<th>ITRF</th>
<th>NAD83 (SCRS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CGG2000</td>
<td>CGG2005</td>
</tr>
<tr>
<td>79L073</td>
<td>-0,631 m</td>
<td>-0,775 m</td>
</tr>
<tr>
<td>79L089</td>
<td>-0,634 m</td>
<td>-0,763 m</td>
</tr>
<tr>
<td>83L118</td>
<td>-0,673 m</td>
<td>-0,787 m</td>
</tr>
<tr>
<td>99K0072</td>
<td>-0,654 m</td>
<td>-0,771 m</td>
</tr>
</tbody>
</table>

Le tableau 34 présente l’ondulation (N₂) du géoïde, l’altitude orthométrique (H₂) obtenue par la transformation directe avec le modèle HT2.0 et la différence (ΔH) de cette altitude avec la valeur connue en CGVD28 (tableau 31, colonne « H »). La faible différence démontre un bon degré
Les référentiels altimétriques

d’exactitude du modèle HT2.0 lorsqu’il est utilisé dans un secteur bien contrôlé par plusieurs repères du *Supernet* (figure 50). Il ne faut pas oublier que la différence (ΔH) inclut les erreurs contenues dans l’altitude géodésique (h), l’altitude orthométrique (H) et l’ondulation du géoïde hybride HT2.0 (N_2) ainsi que l’écart altimétrique entre les versions 2 et 3.1 du NAD83 (SCRS).

Tableau 34 : HT2.0 – Région Rivière-du-Loup

<table>
<thead>
<tr>
<th>Matricule</th>
<th>N_2</th>
<th>H_2</th>
<th>ΔH</th>
</tr>
</thead>
<tbody>
<tr>
<td>79L073</td>
<td>-25,981 m</td>
<td>275,764 m</td>
<td>0,010 m</td>
</tr>
<tr>
<td>79L089</td>
<td>-26,792 m</td>
<td>4,628 m</td>
<td>0,012 m</td>
</tr>
<tr>
<td>83L118</td>
<td>-26,622 m</td>
<td>41,398 m</td>
<td>-0,003 m</td>
</tr>
<tr>
<td>99K0072</td>
<td>-26,683 m</td>
<td>4,415 m</td>
<td>-0,009 m</td>
</tr>
</tbody>
</table>

La deuxième analyse métrique se situe dans un secteur où il n’y a pas de points de contrôle provenant du *Supernet*. Cette analyse fera ressortir la faiblesse du modèle de géoïde hybride HT2.0 dans de tels secteurs et proposera des méthodes pour transformer des altitudes géodésiques à l’aide du logiciel GPS-H. Le tableau 35 présente les altitudes géodésiques (h) et orthométriques (H) de huit repères, nommés par leur matricule, situés dans la région de Kuujjuarapik. Les altitudes géodésiques sont dans la version 2 de la structure NAD83 (SCRS) et les altitudes orthométriques sont a priori réputées être dans la structure CGVD28. La colonne « N_{83-28} » représente l’écart (h – H) entre ces deux structures. Dans un monde parfait, cet écart représenterait l’ondulation du géoïde.

Tableau 35 : Altitudes h et H et différence d’altitudes pour huit repères

<table>
<thead>
<tr>
<th>Matricule</th>
<th>h</th>
<th>H</th>
<th>N_{83-28}</th>
</tr>
</thead>
<tbody>
<tr>
<td>72KA102</td>
<td>-3,118 m</td>
<td>38,621 m</td>
<td>-41,739 m</td>
</tr>
<tr>
<td>72KA116</td>
<td>-12,269 m</td>
<td>29,493 m</td>
<td>-41,762 m</td>
</tr>
<tr>
<td>86KS001</td>
<td>-33,607 m</td>
<td>8,187 m</td>
<td>-41,794 m</td>
</tr>
<tr>
<td>86KS002</td>
<td>-31,813 m</td>
<td>9,992 m</td>
<td>-41,805 m</td>
</tr>
<tr>
<td>86KS003</td>
<td>-28,748 m</td>
<td>13,042 m</td>
<td>-41,790 m</td>
</tr>
<tr>
<td>86KS004</td>
<td>-4,364 m</td>
<td>37,370 m</td>
<td>-41,734 m</td>
</tr>
<tr>
<td>89L310</td>
<td>-8,009 m</td>
<td>33,726 m</td>
<td>-41,735 m</td>
</tr>
<tr>
<td>89L314</td>
<td>-40,703 m</td>
<td>1,101 m</td>
<td>-41,804 m</td>
</tr>
</tbody>
</table>

Les repères 89L310 et 89L314 font partie du *Supernet*, mais ils ont été exclus du processus pour produire le modèle HT2.0. La raison de leur exclusion est qu’ils n’ont pas été rattachés par nivellement géodésique à l’infrastructure CGVD28. Les altitudes orthométriques de cette région doivent être considérées comme celles faisant partie d’un système de référence altimétrique local.
Les référentiels altimétriques

Le tableau 36 montre un cas extrême d’erreur que peut produire la transformation directe avec le modèle HT2.0 dans un système altimétrique local. Pour la région étudiée, il y a une différence (ΔH) d’environ 1 m entre l’altitude connue (tableau 35, colonne « H ») et celle obtenue (H₂) après la transformation directe.

Tableau 36 : HT2.0 – Région Kuujjuarapik

<table>
<thead>
<tr>
<th>Matricule</th>
<th>N₂</th>
<th>H₂</th>
<th>ΔH</th>
</tr>
</thead>
<tbody>
<tr>
<td>72KA102</td>
<td>-42,690 m</td>
<td>39,572 m</td>
<td>0,952 m</td>
</tr>
<tr>
<td>72KA116</td>
<td>-42,705 m</td>
<td>30,436 m</td>
<td>0,943 m</td>
</tr>
<tr>
<td>86KS001</td>
<td>-42,732 m</td>
<td>9,125 m</td>
<td>0,939 m</td>
</tr>
<tr>
<td>86KS002</td>
<td>-42,738 m</td>
<td>10,925 m</td>
<td>0,932 m</td>
</tr>
<tr>
<td>86KS003</td>
<td>-42,731 m</td>
<td>13,983 m</td>
<td>0,940 m</td>
</tr>
<tr>
<td>86KS004</td>
<td>-42,683 m</td>
<td>38,319 m</td>
<td>0,949 m</td>
</tr>
<tr>
<td>89L310</td>
<td>-42,685 m</td>
<td>34,676 m</td>
<td>0,950 m</td>
</tr>
<tr>
<td>89L314</td>
<td>-42,749 m</td>
<td>2,046 m</td>
<td>0,946 m</td>
</tr>
</tbody>
</table>

La transformation directe à partir du modèle HT2.0 est à éviter dans un secteur où les altitudes sont issues d’un système local. Toutefois, le logiciel GPS-H offre deux méthodes pour transformer des altitudes géodésiques en altitudes locales ou en altitudes CGVD28 : la transformation par biais et la transformation par plan. Pour présenter ces deux méthodes, cinq des huit repères serviront de points de contrôle. Les repères 72KA102, 86KS003 et 86KS004 serviront de repères témoins pour démontrer la précision des deux méthodes. Les exemples qui suivent ne servent qu’à expliquer avec des données réelles le comportement de ces deux méthodes.

Le tableau 37 présente les résultats obtenus avec la transformation par biais. La colonne « N₂ » donne l’ondulation du géoïde, corrigée par le biais, servant aux calculs des altitudes orthométriques locales (H₂). La colonne « ΔH₂ » donne la différence entre H₂ et la valeur connue (tableau 35, colonne « H »). Les ondulations N₂005 proviennent du modèle CGG2005 transformé en NAD83 (SCRS).

Le tableau 38 présente les résultats obtenus avec la transformation par plan. La colonne « Nₚ » donne l’ondulation du géoïde, corrigée par un plan, servant aux calculs des altitudes orthométriques locales (Hₚ). La colonne « ΔHₚ » donne la différence entre Hₚ et la valeur connue (tableau 35, colonne « H »). Malgré la petite taille du secteur (moins de 3 km), il semble y avoir une faible pente puisque la différence ΔHₚ aux repères témoins est plus petite que celle obtenue avec la transformation par biais. Il ne faut pas oublier que les ΔH₂ et ΔHₚ incluent l'imprécision des altitudes, du modèle de géoïde et de sa transformation dans la structure NAD83 (SCRS).
Tableau 37 : Transformation d’altitudes avec un biais

<table>
<thead>
<tr>
<th>Matricule</th>
<th>N_{2005}</th>
<th>Biais</th>
<th>N_{B}</th>
<th>H_{B}</th>
<th>ΔH_{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point de contrôle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72KA116</td>
<td>-42,399 m</td>
<td>0,636 m</td>
<td>-41,763 m</td>
<td>29,494 m</td>
<td>0,001 m</td>
</tr>
<tr>
<td>86KS001</td>
<td>-42,425 m</td>
<td>0,636 m</td>
<td>-41,790 m</td>
<td>8,183 m</td>
<td>-0,004 m</td>
</tr>
<tr>
<td>86KS002</td>
<td>-42,432 m</td>
<td>0,636 m</td>
<td>-41,796 m</td>
<td>9,983 m</td>
<td>-0,009 m</td>
</tr>
<tr>
<td>89L310</td>
<td>-42,379 m</td>
<td>0,636 m</td>
<td>-41,743 m</td>
<td>33,734 m</td>
<td>0,008 m</td>
</tr>
<tr>
<td>89L314</td>
<td>-42,443 m</td>
<td>0,636 m</td>
<td>-41,808 m</td>
<td>1,105 m</td>
<td>0,004 m</td>
</tr>
<tr>
<td>Repère témoin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72KA102</td>
<td>-42,384 m</td>
<td>0,636 m</td>
<td>-41,748 m</td>
<td>38,630 m</td>
<td>0,009 m</td>
</tr>
<tr>
<td>86KS003</td>
<td>-42,425 m</td>
<td>0,636 m</td>
<td>-41,789 m</td>
<td>13,041 m</td>
<td>-0,001 m</td>
</tr>
<tr>
<td>86KS004</td>
<td>-42,377 m</td>
<td>0,636 m</td>
<td>-41,742 m</td>
<td>37,378 m</td>
<td>0,008 m</td>
</tr>
</tbody>
</table>

Tableau 38 : Transformation d’altitudes avec un plan

<table>
<thead>
<tr>
<th>Matricule</th>
<th>N_{2005}</th>
<th>Correction</th>
<th>N_{P}</th>
<th>H_{P}</th>
<th>ΔH_{P}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point de contrôle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72KA116</td>
<td>-42,399 m</td>
<td>0,636 m</td>
<td>-41,763 m</td>
<td>29,494 m</td>
<td>0,001 m</td>
</tr>
<tr>
<td>86KS001</td>
<td>-42,425 m</td>
<td>0,629 m</td>
<td>-41,796 m</td>
<td>8,189 m</td>
<td>0,002 m</td>
</tr>
<tr>
<td>86KS002</td>
<td>-42,432 m</td>
<td>0,633 m</td>
<td>-41,798 m</td>
<td>9,985 m</td>
<td>-0,007 m</td>
</tr>
<tr>
<td>89L310</td>
<td>-42,379 m</td>
<td>0,644 m</td>
<td>-41,735 m</td>
<td>33,726 m</td>
<td>0,000 m</td>
</tr>
<tr>
<td>89L314</td>
<td>-42,443 m</td>
<td>0,636 m</td>
<td>-41,807 m</td>
<td>1,104 m</td>
<td>0,003 m</td>
</tr>
<tr>
<td>Repère témoin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72KA102</td>
<td>-42,384 m</td>
<td>0,641 m</td>
<td>-41,743 m</td>
<td>38,625 m</td>
<td>0,004 m</td>
</tr>
<tr>
<td>86KS003</td>
<td>-42,425 m</td>
<td>0,637 m</td>
<td>-41,788 m</td>
<td>13,040 m</td>
<td>-0,002 m</td>
</tr>
<tr>
<td>86KS004</td>
<td>-42,377 m</td>
<td>0,644 m</td>
<td>-41,734 m</td>
<td>37,370 m</td>
<td>0,000 m</td>
</tr>
</tbody>
</table>

Le choix de la méthode de transformation par biais ou par plan dépendra de plusieurs facteurs, dont la précision recherchée. La transformation par biais est à privilégier pour l’analyse initiale du secteur de travail. Il est ainsi plus facile de déceler la présence d’un plan dans le secteur. Pour les points de contrôle, il faut favoriser les repères dont l’altitude orthométrique provient d’un nivellement géométrique. Le nivellement trigonométrique ne confère pas une aussi bonne précision aux altitudes. Lors de la transformation, il ne faut pas oublier de transformer le modèle de géoïde gravimétrique dans la structure NAD83 (SCRS).

En conclusion, la transformation par biais ou par plan est la méthode à privilégier pour obtenir des altitudes orthométriques CGVD28. Ce type de transformation tient compte des petites particularités locales que ne fait pas la transformation directe avec le modèle de géoïde hybride HT2.0, même dans des secteurs contrôlés par le Supernet.
Les référentiels de demain

Aujourd'hui, avec des techniques de mesure et de traitement de plus en plus perfectionnées et après deux décennies de collectes de données, les réalisations de l'ITRS, soit les ITRF, convergent vers une certaine stabilité quant à l'exactitude et à la précision. Il n'y a pas lieu d'entrevoir un changement majeur au cours des prochaines années dans la réalisation de l'ITRS et encore moins dans sa définition. Les systèmes de référence terrestres régionaux implantés récemment et qui sont basés sur une version de l'ITRF ne devraient pas connaître de changement dans les prochaines années. Par contre, il y a des systèmes de référence terrestres régionaux et leurs structures actuelles qui peuvent encore évoluer. Par exemple, le système de référence terrestre régional NAD83, tel qu'il a été réalisé, présente un certain degré d'incompatibilité par rapport aux technologies spatiales. Cette incompatibilité provient principalement du décalage d'environ 2 m qui existe entre son origine et celui des systèmes de référence terrestres globaux. Le NAD83 devra faire place à moyen terme à un système de référence terrestre régional géocentrique compatible avec les technologies spatiales.

Contrairement aux systèmes de référence terrestres globaux et à leurs réalisations, les systèmes de référence altimétriques sont au début d'une ère de changement qui bouleversera les systèmes actuels. Le principal changement viendra de la modélisation du géoïde. Le défi du début du XXIᵉ siècle sera de modéliser le géoïde pour qu'il représente le plus exactement possible sa forme réelle. Avec un modèle de géoïde exact et précis ainsi que référencé dans l'ITRS, la communauté scientifique disposera alors d'une surface de référence mondiale unique. Par sa nature, cette surface est indépendante de la croûte terrestre. Il sera alors possible de discriminer, entre autres, les mouvements du sol (relèvement ou affaissement) des variations du niveau des mers. Le suivi rigoureux du niveau des mers deviendra un enjeu international au cours des prochaines années.

Grâce aux avancées technologiques dans le domaine de la gravimétrie, et plus particulièrement de la gravimétrie satellitaire, il n'est plus nécessaire de faire du nivellement géodésique pour établir une structure de référence altimétrique. Les structures actuelles sont majoritairement des structures locales qui ne coïncidaient pas avec le géoïde, mais avec une surface équipotentielle quelconque dans le meilleur des cas. La qualité des derniers modèles de géoïde qui incluent des mesures satellitaires démontre qu'ils peuvent servir de surface de référence et ainsi devenir une structure de référence altimétrique s'ils sont combinés à une structure de référence terrestre.

L'utilisation d’un modèle de géoïde comme surface de référence altimétrique est une approche qui est analysée par plusieurs pays pour remplacer les systèmes de référence altimétriques courants. Par exemple, la Nouvelle-Zélande utilise cette approche pour unifier tous ses réseaux.
Les référentiels de demain

altimétriques locaux. Au Canada, la Division des levés géodésiques de Ressources naturelles Canada a mis en place un projet pour moderniser le système de référence altimétrique canadien. La surface de référence de ce nouveau système sera un modèle de géoïde réalisé avec les données de gravimétrie les plus récentes et associé à la structure NAD83 (SCRS). Au début des années 2013, le nouveau système de référence altimétrique devrait prendre le relais et remplacer progressivement le CGVD28.

Un des principaux avantages du futur Système canadien de référence altimétrique (SCRA) sera l’obtention d’altitudes orthométriques \(H_{\text{SCRA}} \) sur tout le territoire canadien par la simple équation suivante :

\[
H_{\text{SCRA}} = h_{\text{SCRS}} - N
\]

où \(h_{\text{SCRS}} \) est l’altitude géodésique NAD83 (SCRS) déterminée par une technique GNSS et \(N \) proviendra d’un nouveau modèle de géoïde.

Le nouveau SCRA modifiera les altitudes orthométriques connues partout au Canada. Le tableau 39 présente les différences préliminaires (\(\Delta H \)) pour 15 villes canadiennes entre les altitudes CGVD28 et les altitudes du futur SCRA (DLG, 2009c). Ainsi, la région de Montréal subirait une diminution d’environ 0,37 m de ses altitudes. Par contre, il n’y aurait pratiquement aucune différence dans les dénivelées. La pente d’environ 0,86 m d’ouest en est qui existe dans le CGVD28 est bien démontrée dans le tableau 39. Rappelons que cette pente est causée principalement par la méconnaissance de la topographie de la surface de la mer lors de la mise en place du CGVD28. Le futur SCRA offrira au Canada un référentiel altimétrique indépendant de la croûte terrestre et de la mer.

Tableau 39 : Différence d’altitudes (\(\Delta H \))

<table>
<thead>
<tr>
<th>Ville</th>
<th>(\Delta H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancouver</td>
<td>0,22 m</td>
</tr>
<tr>
<td>Banff</td>
<td>0,46 m</td>
</tr>
<tr>
<td>Edmonton</td>
<td>-0,03 m</td>
</tr>
<tr>
<td>Regina</td>
<td>-0,26 m</td>
</tr>
<tr>
<td>Winnipeg</td>
<td>-0,32 m</td>
</tr>
<tr>
<td>Thunder Bay</td>
<td>-0,04 m</td>
</tr>
<tr>
<td>Toronto</td>
<td>-0,34 m</td>
</tr>
<tr>
<td>Montréal</td>
<td>-0,37 m</td>
</tr>
<tr>
<td>Rimouski</td>
<td>-0,27 m</td>
</tr>
<tr>
<td>Halifax</td>
<td>-0,64 m</td>
</tr>
<tr>
<td>Charlottetown</td>
<td>-0,47 m</td>
</tr>
<tr>
<td>St-John’s</td>
<td>-0,37 m</td>
</tr>
<tr>
<td>Whitehorse</td>
<td>0,35 m</td>
</tr>
<tr>
<td>Tuktoyaktuk</td>
<td>-0,33 m</td>
</tr>
<tr>
<td>Yellowknife</td>
<td>-0,36 m</td>
</tr>
</tbody>
</table>
Bibliographie

Annexe A

ITRF2005

Unlike the past International Terrestrial Reference Frame (ITRF) versions where global long-term solutions were combined, the ITRF2005 uses as input data time series (weekly from satellite techniques and 24-h session-wise from Very Long Baseline Interferometry) of station positions and daily Earth Orientation Parameters (EOPs). The advantage of using time series of station positions is that it allows to monitor station non-linear motion and discontinuities and to examine the temporal behavior of the frame physical parameters, namely the origin and the scale. The ITRF2005 origin is defined in such a way that it has zero translations and translation rates with respect to the Earth center of mass, averaged by the Satellite Laser Ranging (SLR) time series spanning 13 years of observations. Its scale is defined by nullifying the scale and its rate with respect to the Very Long Baseline Interferometry (VLBI) time series spanning 26 years of observations. The ITRF2005 orientation (at epoch 2000.0) and its rate are aligned to the ITRF2000 using 70 stations of high geodetic quality. The estimated level of consistency of the ITRF2005 origin (at epoch 2000.0) and its rate with respect to the ITRF2000 is respectively 0.1, 0.8, 5.8 mm and 0.2, 0.1, 1.8 mm/yr along the X, Y and Z-axis. We estimate the formal errors on these components to be 0.3 mm and 0.3 mm/yr. We believe that this low level of agreement between the two frame origins is most probably due to the poor SLR network geometry and its degradation over time. The ITRF2005 combination involving 84 co-location sites revealed a scale inconsistency of 1 ppb (6.3 mm at the equator), at epoch 2000.0, and 0.08 ppb/yr between the SLR and VLBI long-term solutions as obtained by the stacking of their respective time series. Possible causes of this inconsistency may include the poor SLR and VLBI networks and their co-locations, local tie uncertainties, systematic effects and possible inconsistent model corrections used in the data analysis of both techniques. For the first time of the ITRF history, the ITRF2005 rigorous combination provides self-consistent series of EOPs, including Polar Motion from VLBI and satellite techniques and Universal Time and Length of Day from VLBI only. A velocity field of 152 sites with an error less than 1.5 mm/yr is used to estimate absolute rotation poles of 15 tectonic plates that are consistent with the ITRF2005 frame. This new absolute plate motion model supersedes and significantly improves that of the ITRF2000 which involved six major tectonic plates.
Annexe B

Versions du NAD83 (SCRS)

Version 1

Cette version se réfère à la première transformation ITRS — NAD83. Les solutions CACS-1 et CBN-1 sont basées sur les quelques stations du SCCA connues dans la solution ITRF92 et transformées en ITRF89. La solution CBN-1 provient principalement des observations GPS effectuées en 1994. La Division des levés géodésiques donna le nom de NAD83 (SCRS96) aux données issues de cette transformation. Le « 96 » dans le nom indique l’année d’introduction de cette transformation et non l’époque de référence.

Version 2

Au départ, la Division des levés géodésiques l’appelait NAD83 (SCRS98) pour la distinguer de la précédente. Le « 98 » indiquait l’année d’introduction de cette transformation et non l’époque de référence. Puisque les positions provenant de la première version n’ont presque jamais été utilisées, l’année d’introduction a été supprimée de l’appellation.

La Direction de la référence géodésique a appuyé les réseaux de niveaux A2, A3, B et C sur la solution CBN-2.

Version 3

Introduites en 2000, les solutions CACS-3 et CBN-3 sont basées sur les quelques stations du SCCA connues en ITRF97 (1997.0). La solution CBN-3 provient des observations GPS utilisées dans CBN-2, auxquelles se sont ajoutées de nouvelles observations GPS.

Une version CBN-3.1 a été introduite en 2001 à la suite de nouvelles observations GPS sur une partie du RBC et sur d’autres points géodésiques. Tous les calculs se sont faits à l’époque d’observation 1997.0.
Version 4

Version 5

Version 6

Annexe C

CGVD28 : Décret 630 du 11 mars 1935

« AT THE GOVERNMENT HOUSE AT OTTAWA
« MONDAY, the 11th day of MARCH, 1935.
« PRESENT:
« HIS EXCELLENCY
« THE GOVERNOR GENERAL IN COUNCIL:
« WHEREAS the Minister of the Interior reports that the Geodetic Service of the Department of the Interior has been carrying on precise levelling since 1906;
« That in 1931 the Department of Public Works transferred all original field books and records, resulting from precise level operations carried on by that Department since 1883, to the Geodetic Service of the Department of the Interior;
« That since that time all precise levelling in Canada has been brought under one organization and has now been consolidated into one national system of levels referred to one datum plane;
« That a number of different datum planes have been, and still are, in use in Canada and that this condition tends to confusion;
« That mean sea level has been generally adopted by other countries as their datum plane for elevations and is the datum plane to which the national system of precise levels of the Geodetic Service of the Department of the Interior has been referred;
« THEREFORE His Excellency the Governor General in Council, on the recommendation of the Minister of the Interior, is pleased to order and it is hereby ordered that mean sea level, as determined at coastal points by the Canadian Hydrographic Service and extended inland by the Canadian Geodetic Service, shall be the official datum plane for elevations in Canada and shall be known as the Canadian Geodetic Datum;
« His Excellency in Council is further pleased to order that the elevations of all works or projects of the Government of the Dominion of Canada which may originate after the date hereof shall be referred to this datum, where possible. »
Guide sur les référentiels géodésiques et altimétriques au Québec